Predicting Highlights in Badminton Matches: A Knowledge- Aware Model Analysis of Rally-by-Rally Statistics

Author:

Liu Xingyu1,Ren Hao2,Chen Tao1

Affiliation:

1. Guangzhou Sport University

2. Guangdong Second Provincial General Hospital

Abstract

Abstract In the realm of sports analytics, predicting highlights in badminton matches plays a crucial role in enhancing fan engagement and broadcasting. This study introduces a Knowledge-Aware Model (KAM) that integrates domain-specific knowledge and data-driven techniques to predict game highlights. Analyzing an extensive dataset from the 2017 World Championships and the 2018 Thomas Cup, comprising over 5,180 individual rallies from 140 singles matches, the KAM considers serving and receiving zones, technical stroke nuances, total strokes, rally time and point outcomes. Comparative evaluations against baseline models and state-of-the-art approaches demonstrate the KAM's superiority, achieving an F1-score of 0.793. By combining comprehensive match statistics with rally-specific data, the KAM offers an innovative approach to predicting highlights, with implications extending beyond badminton to multimedia analysis and recommendation systems. This research presents a pivotal step towards more precise and engaging sports analytics.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3