Study on stability and bearing characteristics of macroscopic pressure arch of surrounding rock in Western deep buried stope of China

Author:

杨 玉亮1,Zhao Yixin1,Zhang Cun1,Ma Jianqi1,Han Penghua1

Affiliation:

1. China University of Mining and Technology (Beijing)

Abstract

Abstract In view of the obvious loose and weak occurrence characteristics of the deeply buried thick weakly cemented stratum in the western mining area of China, the bearing characteristics and stability mechanism of the macrography surrounding rock pressure arch (SRPA) are studied. Firstly, considering the engineering characteristics of deep mining, a SRPA model with trapezoidal load was constructed based on the three-hinged arch theory, the shape characteristic, rise-span ratio and arch thickness equations were derived, the arch thickness under different stress paths is analyzed to characterize the bearing performance of pressure arch. Secondly, the internal force distribution law and destabilization damage type were studied by establishing a two-dimensional bearing SRPA model through arch without articulation theory. The instability type and location can be accurately judged and verified by simulation of similar materials. The results show that, the rational arch axis of SRPA is a cubic parabola with opening downward, its rise-span ratio is between 0.3–0.5. Increasing the rise-span ratio and lateral pressure coefficient can promote the stable bearing capacity of arch. Axial force distribution on the SRPA section is basically consistent with the arch axis, and the arch has the best bearing characteristics. The positive bending moment occurs in the ranges of [0°, 30°] and [81°, 90°] on both sides of the symmetry axis, where is prone to tensile failure. The maximum shear force is concentrated on the arch waist and skewback, and these sections are prone to shear failure. The instability modes of SRPA can be divided into “skewback - vault (arch waist)” and “vault (arch waist) - skewback”. The research results have theoretical guiding significance for mining roof management.

Publisher

Research Square Platform LLC

Reference44 articles.

1. Trends in relationships between measured in-situ stresses and depth;Brown ET;Int. J. Rock Mech. Min. Sci.,1978

2. An analysis of rock mass characteristics which influence the choice of support;Bednarek L;Geomech. Eng.,2020

3. Soil structure interaction for landslide stabilizing piles;Chen C;Comput. Geotech.,2002

4. Stress redistribution and ground arch development during tunneling;Chen CN;Tunn. Undergr. Space Technol.,2011

5. Cai, M. F. (2013), Rock Mechanics and Engineering (2nd Edition), Science press, Beijing, China.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3