Real-time Factory Smoke Detection Based on Two-stage Relation-guided Algorithm

Author:

Wang Zhenyu1,Ji Senrong1,Yin Duokun1

Affiliation:

1. North China Electric Power University

Abstract

Abstract Recently, using image sensing devices to analyze air quality has attracted much attention of researchers. To keep real-time factory smoke under universal social supervision, this paper proposes a mobile-platform-running efficient smoke detection algorithm based on image analysis techniques. Since most smoke images in real scenes have challenging variances, it’s difficult for existing object detection methods. To this end, we introduce the two-stage smoke detection (TSSD) algorithm based on the lightweight framework, in which the prior knowledge and contextual information are modeled into the relation-guided module to reduce the smoke search space, which can therefore significantly improve the shortcomings of the single-stage method. Experimental results show that the TSSD algorithm can robustly improve the detection accuracy of the single-stage method and has good compatibility for different image resolution inputs. Compared with various state-of-the-art detection methods, the accuracy AP mean of the TSSD model reaches 59.24%, even surpassing the current detection model Faster R-CNN. In addition, the detection speed of our proposed model can reach 50 ms (20 FPS), which meets the real-time requirements, and can be deployed in the mobile terminal carrier. This model can be widely used in some scenes with smoke detection requirements, providing great potential for practical environmental applications.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of pest using Odor substance based on Deep Learning Algorithms;2021 5th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT);2021-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3