Affiliation:
1. North China Electric Power University
Abstract
Abstract
Recently, using image sensing devices to analyze air quality has attracted much attention of researchers. To keep real-time factory smoke under universal social supervision, this paper proposes a mobile-platform-running efficient smoke detection algorithm based on image analysis techniques. Since most smoke images in real scenes have challenging variances, it’s difficult for existing object detection methods. To this end, we introduce the two-stage smoke detection (TSSD) algorithm based on the lightweight framework, in which the prior knowledge and contextual information are modeled into the relation-guided module to reduce the smoke search space, which can therefore significantly improve the shortcomings of the single-stage method. Experimental results show that the TSSD algorithm can robustly improve the detection accuracy of the single-stage method and has good compatibility for different image resolution inputs. Compared with various state-of-the-art detection methods, the accuracy AP mean of the TSSD model reaches 59.24%, even surpassing the current detection model Faster R-CNN. In addition, the detection speed of our proposed model can reach 50 ms (20 FPS), which meets the real-time requirements, and can be deployed in the mobile terminal carrier. This model can be widely used in some scenes with smoke detection requirements, providing great potential for practical environmental applications.
Publisher
Research Square Platform LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Detection of pest using Odor substance based on Deep Learning Algorithms;2021 5th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT);2021-12-10