Implementation of Banded Smith-Waterman Sequence Alignment Algorithm on CPU and FPGA

Author:

Mukherji Prachi1,Rajput Seema H.1,Kendre Nandini1,Mudaliar Vaishnavi1

Affiliation:

1. Cummins College of Engineering for Women Pune

Abstract

Abstract

Sequence alignment(SA) is a fundamental aspect in the field of bioinformatics, crucial for various applications such as DNA sequencing and protein structure prediction. It involves the process of comparing a new genome sequence with the sequences previously stored in a database. However, the computational demands of Smith-Waterman alignment can be substantial, particularly when analyzing large genomic datasets. To address this challenge, we present a comprehensive comparative study that explores the acceleration of Smith-Waterman sequence alignment using different hardware platforms: Central Processing Units (CPUs) and Field-Programmable Gate Arrays (FPGAs. In this study, we evaluate and contrast the performance and scalability of Smith-Waterman alignment on these platforms, considering CPU and FPGA-based implementation. We assess their computational capabilities and memory requirements for various sequence lengths and scoring parameters. Through extensive benchmarking and sequence analysis, particularly on heterogeneous CPU + FPGA platforms profiling, we provide insights into the advantages and limitations of each platform, shedding light on the trade-offs between computation speed and hardware cost.

Publisher

Springer Science and Business Media LLC

Reference7 articles.

1. Harris, B., Jacob, A. C., Lancaster, J. M., Buhler, J., Chamberlain, R. D., Smith-Waterman, A. B., Accelerator for Mercury, F. P. G. A., BLASTP, 2007 International Conference on Field Programmable Logic and Applications, Amsterdam, Netherlands, [2], S. A. M., Al Junid, Z. A., Majid, A. K., Halim, [3], L., Hasan, Z., Al-Ars, An Overview of Hardware-Based Acceleration of Biological Sequence Alignment, Computational Biology and Applied Bioinformatics, Prof. H. Lopes2011., [4], L., Hasan, Z., Al-Ars, An Overview of Hardware-Based Acceleration of Biological Sequence Alignment, Computational Biology and Applied Bioinformatics, Prof. H. Lopes2011. [5], Chen, P., Wang, C., Li, X., Zhou, X., Hardware acceleration for the banded Smith-Waterman algorithm with the cycled systolic array, 2013 International Conference on Field-Programmable Technology (FPT), Kyoto, Japan, 2013. [6] M. N., Isa, D. S., Nurdin, M. I., Ahmad, S. A. Z., Murad, S. N., Mohyar, M., Mahyiddin, A., Harun, R. C., Ismail, S. S., Jamuar, A., Bahari, X., Fei, Z., Dan, L., Lina, M., Xin, Z., Chunlei, P., Patil, P., Pattiwar, S., Khan, V., Panch, Speed-up of Sequence Alignment Algorithms on CUDA Compatible GPUs, International Journal of Research in Engineering, Science and Management, vol. 1, no. 12, December 2018. [9] Y.-L., Liao, Y. C., Li, N. C., Chen, Y. C., Lu, Adaptively Banded Smith-Waterman Algorithm for Long Reads and Its Hardware Accelerator, IEEE 29th International Conference on Application-specific Systems, Architectures and Processors, 2018. [10], Hakim, A., Kashtwari, A., Tiwari, R., Sharma, J., Performance Analysis of DNA Sequencing Using Smith-Waterman Algorithm on FPGA, Journal of VLSI Design ToolsTechnology, vol. 9, no. 2, 2019. [11] F. F. de Oliveira, Dias, L. A., Fernandes, M. A. C., Parallel Implementation of Smith-Waterman Algorithm on FPGA, 2021. [12], Li, L., Lin, J., & Wang, Z. (2007). PipeBSW: A Two-Stage Pipeline Structure for Banded Smith-Waterman Algorithm on FPGA, IEEE Computer Society Annual Symposium on VLSI, 2021. [13] P. Kingma, Performance of Smith-Waterman DNA sequence matching on a FPGA, University of Twente, Enschede, July 2022. [14] Z. Xia, Y. Cui, A. Zhang, T. Tang, L. Peng, C. Huang, C. Yang, X. Liao, A Review of Parallel Implementations for the Smith-Waterman Algorithm, Interdisciplinary Sciences, Computational Life Sciences, vol. 14, no. 1, 2022.

2. FPGA Acceleration for DNA Sequence Alignment;Caffarena G;Journal of Circuits Systems and Computers,2007

3. FPGA-Accelerated 3rd Generation DNA Sequencing;Wu Z;IEEE Transactions on Biomedical Circuits and Systems,2020

4. Feng, Y., Zhang, Y., Ying, C., Wang, D., & Du, C. (2015). Nanopore-Based Fourth-Generation DNA Sequencing Technology, Genomics, Proteomics & Bioinformatics, vol. 13, no. 1, pp. 4–16, 10.1016/j.gpb.2015.01.009.

5. Feng, Y., Zhang, Y., Ying, C., Wang, D., & Du, C. (2015). Nanopore-based fourth-generation DNA sequencing technology, Genomics, Proteomics & Bioinformatics, vol. 13, no. 1, pp. 4–16, Jan.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3