Glutathione overproduction mediates lymphoma initiating cells survival and has a sex-dependent effect on lymphomagenesis
Author:
Campanero Miguel R.1ORCID, H-Alcántara Alberto1ORCID, Kourani Omar1, Martínez-Núñez Patricia1, Herranz-Martín Estela1, Fuentes Patricia2ORCID, Toribio Maria L.3, Marcos-Jiménez Ana4, Muñoz-Calleja Cecilia4, Iglesias Teresa5ORCID
Affiliation:
1. Spanish National Research Council 2. Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid 3. Centro de Biología Molecular “Severo Ochoa” 4. Hospital Universitario de la Princesa 5. Instituto de Investigaciones Biomédicas
Abstract
Abstract
Lymphoid tumor patients often exhibit resistance to standard therapies or experience relapse post-remission. Relapse is driven by Tumor Initiating Cells (TICs), a subset of tumor cells capable of regrowing the tumor and highly resistant to therapy. Growing cells in 3D gels is a method to discern tumorigenic cells because it strongly correlates with tumorigenicity. The finding that TICs, rather than differentiated tumor cells, grow in 3D gels offers a unique opportunity to unveil TIC-specific signaling pathways and therapeutic targets common to various cancer types. Here, we show that culturing lymphoid cells in 3D gels triggers reactive oxygen species (ROS) production, leading to non-tumor lymphoid cell death while enabling the survival and proliferation of a subset of lymphoma/leukemia cells, TICs or TIC-like cells. Treatment with the antioxidant N-acetylcysteine inhibits this lethality and promotes the growth of primary non-tumor lymphoid cells in 3D gels. Some lymphoma cells escape ROS-induced lethality by boosting antioxidant glutathione production, a response not seen in non-tumor cells. Reducing glutathione production in lymphoma cells, either through pharmacological inhibition of glutamate cysteine ligase (GCL), the enzyme catalyzing the rate-limiting step in glutathione biosynthesis, or via knockdown of GCLC, the GCL catalytic subunit, sharply decreased cell growth in 3D gels and xenografts. Tumor cells from B-cell lymphoma/leukemia patients and l-MYC mice, a B-cell lymphoma mouse model, overproduce glutathione. Importantly, pharmacological GCL inhibition hindered lymphoma growth in female l-MYC mice, suggesting that this treatment holds promise as a therapeutic strategy for female lymphoma/leukemia patients.
Publisher
Springer Science and Business Media LLC
Reference41 articles.
1. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery;Zhou BB;Nat Rev Drug Discov,2009 2. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance;Gillet JP;Proc Natl Acad Sci U S A,2011 3. E.C. Townsend, M.A. Murakami, A. Christodoulou, A.L. Christie, J. Koster, T.A. DeSouza, E.A. Morgan, S.P. Kallgren, H. Liu, S.C. Wu, O. Plana, J. Montero, K.E. Stevenson, P. Rao, R. Vadhi, M. Andreeff, P. Armand, K.K. Ballen, P. Barzaghi-Rinaudo, S. Cahill, R.A. Clark, V.G. Cooke, M.S. Davids, D.J. DeAngelo, D.M. Dorfman, H. Eaton, B.L. Ebert, J. Etchin, B. Firestone, D.C. Fisher, A.S. Freedman, I.A. Galinsky, H. Gao, J.S. Garcia, F. Garnache-Ottou, T.A. Graubert, A. Gutierrez, E. Halilovic, M.H. Harris, Z.T. Herbert, S.M. Horwitz, G. Inghirami, A.M. Intlekofer, M. Ito, S. Izraeli, E.D. Jacobsen, C.A. Jacobson, S. Jeay, I. Jeremias, M.A. Kelliher, R. Koch, M. Konopleva, N. Kopp, S.M. Kornblau, A.L. Kung, T.S. Kupper, N.R. LeBoeuf, A.S. LaCasce, E. Lees, L.S. Li, A.T. Look, M. Murakami, M. Muschen, D. Neuberg, S.Y. Ng, O.O. Odejide, S.H. Orkin, R.R. Paquette, A.E. Place, J.E. Roderick, J.A. Ryan, S.E. Sallan, B. Shoji, L.B. Silverman, R.J. Soiffer, D.P. Steensma, K. Stegmaier, R.M. Stone, J. Tamburini, A.R. Thorner, P. van Hummelen, M. Wadleigh, M. Wiesmann, A.P. Weng, J.U. Wuerthner, D.A. Williams, B.M. Wollison, A.A. Lane, A. Letai, M.M. Bertagnolli, J. Ritz, M. Brown, H. Long, J.C. Aster, M.A. Shipp, J.D. Griffin, D.M. Weinstock, The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice, Cancer Cell, 29 (2016) 574–586. 4. Quantitative high throughput screening using a primary human three-dimensional organotypic culture predicts in vivo efficacy;Kenny HA;Nat Commun,2015 5. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment;Yoshii Y;Biomaterials,2015
|
|