Monitoring Lipopolysaccharide-induced Macrophage Polarization by Surface-Enhanced Raman Scattering

Author:

Yilmaz Deniz1,Culha Mustafa2

Affiliation:

1. Yeditepe University, Faculty of Engineering, Department of Genetics and Bioengineering

2. Sabanci University Nanotechnology Research and Application Center (SUNUM)

Abstract

Abstract

Macrophages are among the most important components of the innate immune system where the interaction of pathogens and their phagocytosis occur as the first barrier of immunity. When nanomaterials interact with the human body, they have to face macrophages as well. Thus, understanding of nanomaterials-macrophage interactions and underlying mechanisms is crucial. For this purpose, various methods are used. In this study, surface-enhanced Raman scattering (SERS) is proposed by studying lipopolysaccharide (LPS) induced macrophage polarization using gold nanoparticles (AuNPs) as an alternative to the current approaches. For this purpose, RAW 264.7 cells were polarized by LPS, and polarization mechanisms were characterized by nitrite release, reactive oxygen species (ROS) formation, and monitored using SERS. The spectral changes were interpreted based on the molecular pathways induced by LPS. Furthermore, polarized macrophages by LPS were exposed to the toxic AuNPs doses to monitor the enhanced phagocytosis and related spectral changes. It was observed that LPS induced macrophage polarization and enhanced AuNPs phagocytosis by activated macrophages elucidated clearly from SERS spectra in a label-free non-destructive manner.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3