Flow-Based Intrusion Detection on Software-Defined Networks: A Multivariate Time Series Anomaly Detection Approach

Author:

ZAVRAK Sultan1ORCID,İskefiyeli Murat2

Affiliation:

1. Duzce University: Duzce Universitesi

2. Sakarya University: Sakarya Universitesi

Abstract

Abstract In this study, SAnDet architecture, which can do an anomaly-based intrusion detection by taking advantage of the capabilities offered by SDN architecture, is presented and implemented as controller application. A detailed description of this system which consists of three main modules which are statistics collector, anomaly detector, and anomaly prevention is given. More specifically, Replicator Neural Networks (RNN) which is a special variant of the autoencoder, and EncDecAD methods which a special type of LSTM networks that can produce successful results especially in given data series, were used to identify unknown attacks using flow features collected from OpenFlow switches. In experiments, flow-based features extracted from network traffic data including different types of attacks, are given as input into models as time series. The results of the methods are calculated in terms of the ROC and AUC metrics. Experimental results show that EncDecAD outperforms RNN and the methods proposed in the literature.

Publisher

Research Square Platform LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3