Enhancing Time-Series Access Control Using Deep Recurrent Neural Networks and Generative Adversarial Networks

Author:

Mohammadi Nasibeh1,Rezakhani Afshin2,Seydjavadi Seyd Hamid Haj3,Asghari Parvaneh1

Affiliation:

1. Islamic Azad University

2. University of Ayatollah Borujerdi

3. Shahed University

Abstract

Abstract

In this research, we introduce an innovative Attribute-Based Access Control (ABAC) system incorporating the novel attribute of "access history" and deep learning techniques, specifically time-series neural networks such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks, to enhance decision-making accuracy. The system includes key components such as Policy Decision and Enforcement Points, access log management, and an offline-trained deep learning model for real-time access validation. Our proposed method improves accuracy by integrating Generative Adversarial Networks (GANs) to generate realistic synthetic data for training. Experimental results on various datasets, including real-world and synthetic data, demonstrate the superior performance of our model over traditional and recent methods, achieving an accuracy of over 98% in complex access control scenarios.

Publisher

Springer Science and Business Media LLC

Reference50 articles.

1. Amazon.com, Amazon employee access challenge. Kaggle.

2. Next-generation big data federation access control: A reference model;Awaysheh FM;Future Generation Comput. Syst.,2020

3. Basiri, M., Nemati, S.: ABCDM: An Attention-based Bidirectional CNN-RNN Deep Model for sentiment analysis. Future Generation Computer Systems 115 (2021) 279–294. (2021)

4. Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via policy extraction. Advances in neural information processing systems, 31. (2018)

5. Betz, L.: An Analysis of the Relationship between Security Information Technology Enhancements and Computer Security Breaches and Incidents. (Doctoral dissertation,Nova Southeastern University). (2016)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3