Affiliation:
1. UFLA: Universidade Federal de Lavras
Abstract
Abstract
In conventional in vitro culture, plantlets are kept in closed containers to avoid contamination and drying of the explant. Ventilation inside the containers improves plant growth and affects secondary metabolism, as it modifies the microenvironmental conditions. Therefore, the objective of this study was to evaluate the effect of the use of ventilation systems on the growth characteristics and production of photosynthetic pigments and volatile organic compounds (VOCs) in Aeollanthus suaveolens Mart. ex Spreng. (Lamiaceae) cultured in vitro. Nodal segments containing one pair of leaves were cultured in a conventional system (NMS) and in natural ventilation systems with one (AMS1), two (AMS2) and four (AMS4) porous membranes. At 40 days, the plantlets were evaluated for growth, VOC concentration, and photosynthetic pigment production. The number of porous membranes used in the vial cap affected growth, photosynthetic pigments and VOCs. A higher number of porous membranes (AMS4) led to greater dry weight accumulation, increased production of photosynthetic pigments, and enhanced synthesis of (Z)-β-farnesene. Lower growth and fewer photosynthetic pigments, and increase linalool acetate synthesis were observed in the culture without the use of porous membranes (NMS). The leaf area of plantlets cultivated with the use of four membranes was 3.8 times greater than that of plantlets cultivated without the use of membranes. For the photoautotrophic cultivation of A. suaveolens in vitro, the use of natural ventilation with four membranes is recommended because it promotes better growth, increases the production of photosynthetic pigments and is superior to the conventional sealed system.
Publisher
Research Square Platform LLC
Reference41 articles.
1. Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry, vol 456. Allured publishing corporation Carol Stream, IL, Illinois
2. Alvarez C, Sáez P, Sáez K, Sánchez-Olate M, Ríos D (2012) Effects of light and ventilation on physiological parameters during in vitro acclimatization of Gevuina avellana Plant Cell Tissue Organ Cult. 110(1):93–101. https://doi.org/10.1007/s11240-012-0133-x
3. Photon flux density and wavelength influence on growth, photosynthetic pigments and volatile organic compound accumulation in Aeollanthus suaveolens (Catinga-de-mulata) under in vitro conditions;Araújo DX;Ind Crops Prod,2021
4. CO2-enriched microenvironment affects sucrose and macronutrients absorption and promotes autotrophy in the in vitro culture of kiwi (Actinidia deliciosa Chev. Liang and Ferguson);Arigita L;In Vitro Cell Dev Biol - Plant,2010
5. Growth analysis of basil plants submitted to plant growth regulators;Barreiro AP;Bragantia,2006