Comparing the performance of machine learning models for predicting the compressive strength of concrete

Author:

Loureiro Arthur Afonso Bitencourt1,Stefani Ricardo2

Affiliation:

1. Federal University of Mato Grosso

2. Federal University of Ouro Preto

Abstract

Abstract This study aimed to investigate and compare the performance of different machine learning models in predicting the compressive strength of concrete using a data set of 1234 compressive strength values. The predictive variables were selected based on their relevance using the SelectKBest method, resulting in an analysis of eight and six predictive variables. The evaluation was conducted through linear correlation studies via simple linear regression and non-linear correlation studies using support vector regression (SVR), gradient boosting (GB), and artificial neural networks (ANN). The results showed a coefficient of determination (R²) = 0.85 and a root mean square error (RMSE) = 30.9051 MPa for SVR, R² = 0.90 and RMSE = 25.5979 MPa for GB, and R² = 0.87 and RMSE = 5.781 MPa for ANN. The comparison between the machine learning methods revealed significant differences. For instance, GB stood out with a higher R² value, demonstrating its remarkable ability to explain the variability in the data. Conversely, ANN showed the lowest RMSE value, indicating notable accuracy in the predictions. The choice between these approaches depends on considerations regarding the balance between explainability and accuracy. While GB provides a more in-depth understanding of the relationship between variables, ANN stands out for the accuracy of its predictions.

Publisher

Research Square Platform LLC

Reference38 articles.

1. Achong, P. S. A., and Guntor, N. A. A. (2021). Concrete Strength Prediction Using Linear Regression of Machine Learning Algorithm. Recent Trends in Civil Engineering and Built Environment,2(1), 691–699. https://doi.org/10.30880/rtcebe.2021.02.01.075.

2. Andrade, J. J., et al. (2015). Aplicação de métodos de inteligência computacional para a previsão de propriedades mecânicas do concreto de agregado leve. In: XXXVI Iberian Latin-American Congress on Computational Methods in Engineering. http://dx.doi.org/10.20906/CPS/CILAMCE2015-0716.

3. Andrade, J. J. (2016). Técnicas de inteligência computacional para a previsão de previsões mecânicas do nível concreto de agregado. Universidade Federal de Juiz de Fora, Instituto de Ciências Exatas, Departamento de Ciência da Computação, Bacharelado em Ciência da Computação. Orientador: Leonardo Goliatt da Fonseca. Juiz de Fora.

4. Artero, A. O. (2009). Inteligência artificial: teórica e prática. São Paulo: Editora Livraria da Física.

5. Bastos, P. S. D. S. (2006). Histórico e principais elementos estruturais de concreto armado. Notas de aula, Departamento de Engenharia Civil, Universidade Estadual Paulista. Bauru, São Paulo.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3