A novel in vivo model of ureteral fibrosis induced by calcium oxalate beads in C57BL/6J mice

Author:

Watanabe Masaki1,Ando Ryo1,Sugisawa Ryoichi2,Sasaki Nobuya1,Iwai Satomi1

Affiliation:

1. Kitasato University

2. Kindai University Faculty of Medicine

Abstract

Abstract The global incidence of ureteroliths in humans is increasing, particularly posing a problem in developed countries. The most common stone type is calcium oxalate, which is associated with a high recurrence rate. In veterinary medicine, stones are the most common cause of ureteral obstruction in cats, accounting for 72–87% of cases. In cats, stones cause irreversible ureteral damage, necessitating stone treatment as well as ureteral therapy. However, the mechanisms underlying the ureteral damage caused by stones remain unclear. Therefore, this study aimed to create a mouse model suitable for studying the ureteral fibrosis caused by oxalate stones by artificially embedding calcium oxalate in the ureter. Pathological tissue analysis was used to compare normal ureters without ligation and ureters with sham or oxalate bead implantation. The ureters of the sham and oxalate bead groups showed granulation tissue formation, transitional epithelium exfoliation, and densely packed connective tissue in the proprietary and muscle layer regions. Particularly in the oxalate bead group, infiltration of degenerated neutrophils, presence of foreign body giant cells, and hyperplasia of the transitional epithelium were observed. The proportion of fibrosis was higher in the oxalate group than in the sham group. Overall, this mouse model created using oxalate bead implantation has the potential to efficiently induce ureteral obstruction. This mouse model is expected to be used for elucidating the molecular mechanisms of ureteral fibrosis and evaluating therapeutic drugs in future.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3