Affiliation:
1. The Ohio State University
2. The Ohio State University Wexner Medical Center
3. Royal Brompton Hospital
4. Siemens Medical Solutions USA
5. Siemens Healthcare GmbH
Abstract
Abstract
Background
The electrocardiogram (ECG) signal is prone to distortions from gradient and radiofrequency interference and the magnetohydrodynamic effect during cardiovascular magnetic resonance imaging (CMR). Although Pilot Tone Cardiac (PTC) triggering has the potential to overcome these limitations, effectiveness across various CMR techniques has yet to be established.
Purpose
To evaluate the performance of PTC triggering in a comprehensive CMR exam.
Methods
Fifteen volunteers and twenty patients were recruited at two centers. ECG triggered images were collected for comparison in a subset of sequences. The PTC trigger accuracy was evaluated against ECG in cine acquisitions. Two experienced readers scored image quality in PTC-triggered cine, late gadolinium enhancement (LGE), and T1- and T2-weighted dark-blood turbo spin echo (DB-TSE) images. Quantitative cardiac function, flow, and parametric mapping values obtained using PTC and ECG triggered sequences were compared.
Results
Breath-held segmented cine used for trigger timing analysis was collected in 15 volunteers and 14 patients. PTC calibration failed in three volunteers and one patient; ECG trigger recording failed in one patient. Out of 1987 total heartbeats, three mismatched trigger PTC-ECG pairs were found. Image quality scores showed no significant difference between PTC and ECG triggering. There was no significant difference found in quantitative measurements in volunteers. In patients, the only significant difference was found in post-contrast T1 (p = 0.04). ICC showed moderate to excellent agreement in all measurements.
Conclusion
PTC performance was equivalent to ECG in terms of triggering consistency, image quality, and quantitative image measurements across multiple CMR applications.
Publisher
Research Square Platform LLC