Association mapping in multiple yam species (Dioscorea spp.) of quantitative trait loci for yield-related traits

Author:

Adejumobi I. I.1,AGRE Paterne1,Adewumi A.S.1,Temitope E.S.1,Cipriano I.M.2,Komoy J.L2,Adheka J.G.2,Onautshu D.O.2

Affiliation:

1. International Institute of Tropical Agriculture

2. Department of Biotechnology, Faculty of Science, University of Kisangani, Kisangani, DR Congo

Abstract

Abstract Background Yam (Dioscorea spp.) is multiple species with various ploidy levels and is considered as a cash crop in many producing areas. Phenotypic selection in yam improvement is a lengthy procedure. However, marker-assisted selection has proven to reduce the breeding cycle with enhanced selection efficiency. Methodology In this study, a panel of 182 yam accessions distributed across six yam species were assessed for diversity and marker-traits association study using SNP markers generated from Diversity Array Technology platform. Association analysis was performed using mixed linear model (K + Q) implemented in GAPIT followed by gene annotation. Results Accessions performance were significantly different (p < 0.001) across all the traits with high broad-sense heritability (H2). Phenotypic and genotypic correlations showed positive relationships between yield and vigor but negative for yield and yam mosaic disease. Population structure revealed k = 6 as optimal clusters-based species. A total of 15 SNP markers distributed across nine chromosomes loci were associated with yield, vigor, mosaic, and anthracnose disease resistance. Gene annotation for the significant SNP loci identified some putative genes associated with primary metabolism, pest, and disease resistance for resistance to anthracnose, maintenance of NADPH in biosynthetic reaction especially those involving nitro-oxidative stress for resistance to mosaic virus, and seed development, photosynthesis, nutrition use efficiency, stress tolerance, vegetative and reproductive development for tuber yield. Conclusion This study provides valuable insights into the genetic control of plant vigor, anthracnose, mosaic virus resistance, and tuber yield in yam and thus, opens an avenue for developing additional genomic resources for markers-assisted selection focusing on multiple yam species.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3