Spatial forecasting of online food delivery demand

Author:

Bezerra Herlisson1,Cancho Vicente1

Affiliation:

1. University of São Paulo

Abstract

Abstract This work aims to predict demand for orders in the expanded center of S˜ao Paulo, Brazil, using the Spatial Autoregressive Model (SAR) and the Artificial Neural Network - Multilayer Perceptron Model (MLP), based on real data from a Brazilian online food delivery company. Accurately forecasting demand by geographical area is crucial for efficient logistics planning in the company. To address this, we proposed an approach that uses an augmented train matrix to incorporate order information from neighboring areas of the first order, allowing the neural network model to identify spatial autocorrelation in the data. The performance of both models was evaluated using Root Mean Squared Error (RMSE) and the coefficient of determination (R2). In the simulations, both of the models achieved satisfactory performance compared to the historical mean. The MLP model, when best tuned, outperformed the SAR model in both RMSE and R2 coefficient.

Publisher

Research Square Platform LLC

Reference68 articles.

1. Hamed, Khaled H and Rao, A Ramachandra (1998) A modified Mann-Kendall trend test for autocorrelated data. Journal of hydrology 204(1-4): 182--196 Elsevier

2. Taylor, James W (2003) Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society 54(8): 799--805 Taylor & Francis

3. Rey, Sergio J and Anselin, Luc PySAL: A Python library of spatial analytical methods. Handbook of applied spatial analysis, Springer, 2010, 175--193

4. Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E. (2011) Scikit-learn: Machine Learning in {P}ython. Journal of Machine Learning Research 12: 2825--2830

5. Hastie, Trevor and Tibshirani, Robert and Friedman, Jerome (2009) The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3