Reliability Redundancy Allocation for Fire Extinguisher Drone using Hybrid PSO-GWO

Author:

Bhandari Ashok Singh1ORCID,Kumar Akshay2,Ram Mangey1

Affiliation:

1. Graphic Era Deemed to be University

2. Graphic Era Hill University

Abstract

Abstract Reliability Redundancy Allocation Problem (RRAP) plays a vital role in reliability improvement and designing of any system which depends on the arrangement of components i.e., series, parallel, or complex, reliability of the components, and redundancy allocation for the components. In this work, a Fire Extinguisher Drone (FED) is considered for RRAP. The FEDs are very valuable for firefighters in tackling emergencies in non-reachable areas. To maximize the reliability of FED a non-linear mixed integer programming problem is formulated and optimized using the Hybrid Particle Swarm Grey Wolf Optimizer (HPSGWO). This metaheuristic fuses the Particle Swarm Optimization’s (PSO) exploitation ability with the grey wolf optimizer’s (GWO) exploration ability. With constraints such as cost, weight, and volume for the system, different levels of redundancies are applied to get the best redundancy allocation that maximizes the reliability of FED. Also, the results are of HPSGWO for each allocation are compared with the results of GWO, which clearly explains the superiority of the HPSGWO over GWO as well as PSO.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3