Abstract
Uncouplers of mitochondrial electron transport chain, such as 2,4-dinitrophehol (DNP), can mimic calorie restriction by decreasing efficiency of adenosine triphosphate (ATP) synthesis. However, DNP is also a toxic substance, whose overdosage can be lethal. In the fruit fly, Drosophila melanogaster model, we have found that DNP in concentrations of 0.05–0.2 g/L, led to a drastic decrease in fruit fly survival on a low caloric diet (1% sucrose and 1% yeast; 1S-1Y). On the 5S-5Y diet, DNP decreased lifespan of flies reared only in concentration 0.2 g/L, whilst on the diet 15S-15Y DNP either did not significantly shortened fruit fly lifespan or extended it. The lifespan extension on the high caloric 15S-15Y diet with DNP was accompanied by lower activity of lactate dehydrogenase and a decrease in activities of mitochondrial respiratory chain complexes I, II, and V, determined by blue native electrophoresis followed by in-gel activity assays. The exposure to DNP also did not affect key glycolytic enzymes, antioxidant and related enzymes, and markers of oxidative stress, such as aconitase activity and amount protein carbonyls. Consumption of DNP-supplemented diet did not affect flies’ resistance to heat stress, though made male flies slightly more resistant to starvation compared with males reared on the control food. We also did not observe substantial changes in the contents of metabolic stores, triacylglycerols and glycogen, in the DNP-treated flies. All this suggest that a nutrient-rich diets provide effective protection against DNP, providing a mild uncoupling of the respiratory chain that allows lifespan extension without considerable changes in metabolism.