Predicting preoperative muscle invasion status for bladder cancer using computed tomography-based radiomics nomogram

Author:

Zhang Rui1,Jia Shijun1,Zhai Linhan1,Wu Feng1,Zhang Shuang1,Li Feng1

Affiliation:

1. Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science

Abstract

Abstract Objectives The aim of the study is to assess the efficacy of the established computed tomography (CT)-based radiomics nomogram combined with radiomics and clinical features for predicting muscle invasion status in bladder cancer (BCa). Methods A retrospective analysis was conducted using data from patients who underwent CT urography at our institution between May 2018 and April 2023 with uroepithelial carcinoma of the bladder confirmed by postoperative histology. There were 196 patients enrolled in all, and each was randomized at random to either the training cohort (n = 137) or the test cohort (n = 59). 851 radiomics features in all were retrieved. For feature selection, the significance test and least absolute shrinkage and selection operator (LASSO) approaches were utilized. Subsequently, the radiomics score (Radscore) was obtained by applying linear weighting based on the selected features. The clinical and radiomics model, as well as radiomics-clinical nomogram were all established using logistic regression. Three models were evaluated using analysis of the receiver operating characteristic curve. An area under the curve (AUC) and 95% confidence intervals (CI) as well as specificity, sensitivity, accuracy, negative predictive value, and positive predictive value were included in the analysis. Radiomics-clinical nomogram's performance was assessed based on discrimination, calibration, and clinical utility. Results After obtaining 851 radiomics features, 12 features were ultimately selected. Histopathological grading and tortuous blood vessels were included in the clinical model. The Radscore and clinical histopathology grading were among the final predictors in the unique nomogram. The three models had an AUC of 0.811 (95% CI, 0.742–0.880), 0.845 (95% CI, 0.781–0.908), and 0.896 (95% CI, 0.846–0.947) in the training cohort and in the test cohort they were 0.808 (95% CI, 0.703–0.913), 0.847 (95% CI, 0.739–0.954), and 0.887 (95% CI, 0.803–0.971). According to the DeLong test, the radiomics-clinical nomogram's AUC in the training cohort substantially differed from that of the clinical model (AUC: 0.896 versus 0.845, p = 0.015) and the radiomics model (AUC: 0.896 versus 0.811, p = 0.002). The Delong test in the test cohort revealed no significant difference among the three models. The nomogram proved clinically useful, according to decision curve evaluations. Conclusions BCa muscle invasion status could be accurately predicted preoperatively by the radiomics-clinical nomogram.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3