Insight into the Structural and Dynamic Properties of Novel HSP90 Inhibitors through DFT Calculations and Molecular Dynamics Simulations

Author:

Saouli Ibtissam1,Abrane Rahma2,Bidjou-Haiour Chahra1,Boudiba Sameh2

Affiliation:

1. University of Badji-Mokhtar, Annaba

2. University of Echahid Cheikh Larbi Tebessi, Tebessa

Abstract

Abstract

Context: Heat-shock proteins (HSPs), particularly HSP90, are critical molecular chaperones that maintain protein stability, especially in cancer cells. Elevated HSP90 levels in tumors aid in oncogenic protein stabilization. This study focuses on developing potent, selective HSP90 inhibitors to disrupt its chaperone function, targeting cancer cell survival. Using a de novo hybridization approach, we designed novel inhibitors by integrating structural fragments from a known HSP90-binding drug, leading to the creation of hybrid compounds C1, C2, and C3. A 300 ns molecular dynamics simulation of each system revealed that C1, C2, and C3 formed more stable complexes with HSP90 compared to the reference compound, MEY. RMSD, RMSF, Rg, SASA, and MM-PBSA metrics supported these findings. DCCM and FEL analyses confirmed that the inhibitors did not alter HSP90's initial configuration. Further DFT calculations with the B3LYP/6-311++(d,p) basis set assessed frontier molecular orbitals, MEP surfaces, ELF, LOL maps, TDOS and PDOS, affirming their potential as new anti-cancer therapies. Methods Maestro 11.8, Discovery Studio Visualizer, Gromacs-2023, Gaussian 16, and online platforms like SwissADME and ProTox-II were utilized. Fragments generated from eight known HSP90-binding drugs were subjected to SP-docking, leading to 170 fragments. The highest-scoring fragments were merged using the breed panel to create new HSP90 inhibitors. XP-docking and ADMET analyses identified C1, C2, and C3 as the most promising candidates. These compounds were selected for a 300 ns dynamic simulation and subsequent DFT calculations.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3