A new less conservative design for nonlinear robust tracking predictive controller

Author:

zamani abbas1

Affiliation:

1. Iran University of Science and Technology

Abstract

Abstract This paper develops a less-conservative robust tracking predictive controller (LCRTMPC) for nonlinear affine systems capable to deal with changing setpoints and non-additive unknown disturbance. The existence of disturbance and/or sudden changes in a setpoint may lead to feasibility and stability issues in the stabilizing terminal constraint-based MPC. The robust tracking MPCs (RTMPC) usually consider all probable realizations of disturbance or its upper bound in optimization problem which leads to a conservative (poor) tracking performance. The less-conservative method presented here extends the RTMPC to have a large robust positively invariant set (RPI) and appropriate tracking performance. The key idea is tightening control input using estimated disturbance observation error. In this method, the set of tightened control input is calculated using time response characteristics of disturbance observation error. The simulation results of the satellite attitude control system are provided to demonstrate the efficiency of the proposed predictive controller.

Publisher

Research Square Platform LLC

Reference46 articles.

1. Nonlinear Model Predictive Path Tracking Control for Autonomous Vehicles Based on Orthogonal Collocation Method;Zhu G;Int J Control Autom Syst,2023

2. Non-fragile robust model predictive controller design for uncertain time-delay systems with input constraints;Baneshi F;Int J Syst Sci,2023

3. Cenerini J, Mehrez MW, Han Jwoo, Jeon S, Melek W (2023) Model Predictive Path Following Control without terminal constraints for holonomic mobile robots Control Engineering Practice, Volume 132,

4. Zhang X, Pan W, Scattolini R, Yu S, Xu X (2022) Robust Tube-based Model Predictive Control with Koopman Operators, Automatica,

5. Tractable robust MPC design based on nominal predictions;Alvarado I;J Process Control,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3