Age-of-Information in Distributed Systems caused by Asynchronous Computing Modeled as Parallel Renewal Processes

Author:

Redder Adrian1,Karl Holger2

Affiliation:

1. Paderborn University

2. Hasso-Plattner-Institut

Abstract

Abstract We consider methods where processors from a distributed computing (DC) infrastructure compute updates for a set of parameters asynchronously. In such scenarios, the parameter updates can experience practically unbounded stochastic processing times caused by effects like queuing, processor sharing, priorities, preemption, or heavy-tailed traffic. As a result, processors will update parameters multiple times while one processor observes the parameters and calculates a new parameter update based on it. The resulting error between the current parameter and the older version used to calculate the parameter update is thus a function of a discrete information delay that we call Age-of-Information (AoI). To counter the errors caused by AoI, predict the performance of asynchronous algorithms, and effectively solve problems in machine learning and artificial intelligence, it is important to know AoI properties. To do this, we model the processing times in a DC system as parallel renewal processes. For this model, we derive the distribution and moment bounds for the discrete AoI affecting asynchronous algorithms executed on the DC system. We also derive exact expressions for the asymptotic mean and sharp bounds for the asymptotic variance.

Publisher

Research Square Platform LLC

Reference106 articles.

1. Koloskova, Anastasiia and Stich, Sebastian U and Jaggi, Martin (2022) Sharper convergence guarantees for asynchronous sgd for distributed and federated learning. Advances in Neural Information Processing Systems 35: 17202--17215

2. Haan, Laurens and Ferreira, Ana (2006) Extreme value theory: an introduction. Springer

3. Gasull, Armengol and L{\'o}pez-Salcedo, Jos{\'e} A and Utzet, Frederic (2015) Maxima of Gamma random variables and other Weibull-like distributions and the Lambert W W function. Test 24: 714--733 Springer

4. Hinterstoisser, Stefan and Lepetit, Vincent and Wohlhart, Paul and Konolige, Kurt (2018) On pre-trained image features and synthetic images for deep learning. 0--0, Proceedings of the European Conference on Computer Vision (ECCV) Workshops

5. Cohen, Alon and Daniely, Amit and Drori, Yoel and Koren, Tomer and Schain, Mariano (2021) Asynchronous stochastic optimization robust to arbitrary delays. Advances in Neural Information Processing Systems 34: 9024--9035

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3