AI-Driven Aging Pattern Analysis for Improving 0.2% Proof Stress in Binary Ni-Al Alloys with γ – γ' Two-Phase Structure

Author:

Nandal Vickey1,Dieb Sae1,Bulgarevich Dmitry S.1,Osada Toshio1,Koyama Toshiyuki2,Minamoto Satoshi1,Demura Masahiko1

Affiliation:

1. National Institute for Materials Science

2. Nagoya University

Abstract

Abstract This study presents the comprehensive analysis of flexible non-isothermal aging (NIA) patterns discovered through artificial intelligence (AI) to improve the mechanical strength (0.2% proof stress) in γ – γ' two-phase, binary Ni-Al alloys. In our recent investigation, we found that the AI algorithm could propose aging patterns with superior strength compared to conventional isothermal aging. In this current study, we continued our extensive exploration of AI methodologies, uncovering diverse patterns that also surpassed the isothermal aging benchmark. Remarkably, out of 2823 NIA schedules, we found 173 ones outperforming the isothermal aging benchmark. Furthermore, we conducted a detailed analysis of newly AI-discovered patterns. We identified two critical factors for strength improvement: exposure at 700 ℃ and the number of consecutive 700 ℃ exposures (optimally set at two), alongside non-consecutive steps (up to five). The insights gained from these findings may demonstrate the potential of AI-driven approaches to yield ideas on how to achieve improved strength in Ni-Al alloys.

Publisher

Research Square Platform LLC

Reference27 articles.

1. Reed, R. C. The superalloys: fundamentals and applications. (Cambridge University Press, 2006).

2. Kracke, A. Superalloys, the Most Successful Alloy System of Modern Times-Past, Present, and Future. Superalloys 13–50 (2010).

3. Durand-Charre, M. The Microstructure of Superalloys. (1968).

4. Revealing the Precipitation Sequence with Aging Temperature in a Non-equiatomic AlCoCrFeNi High Entropy Alloy;Nandal V;Metallurgical and Materials Transactions A,2021

5. Aging temperature role on precipitation hardening in a non-equiatomic AlCoCrFeNiTi high-entropy alloy;Nandal V;Materials Science and Technology,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3