Radiomics analysis of baseline computed tomography to predict oncological outcomes in patients treated for resectable colorectal cancer liver metastasis

Author:

Montagnon Emmanuel1,Cerny Milena1,Hamilton Vincent1,Derennes Thomas1,Ilinca André1,Elforaici Mohamed2,Jabbour Gilbert1,Edmond Rafi1,Wu Anni1,Romero Francisco3,Cadrin-Chênevert Alexandre4,Kadoury Samuel2,Turcotte Simon1,Tang An1

Affiliation:

1. Centre Hospitalier de l’Université de Montréal

2. Polytechnique Montréal

3. Montreal AI Hub, Ericsson Canada

4. Université Laval

Abstract

Abstract Predicting recurrence and survival of patients with upfront resectable colorectal cancer liver metastases (CRLM) is crucial to personalize treatment. The purpose of this work was to determine whether radiomics analysis of baseline computed tomography (CT) images could help predict outcomes of resectable CRLM compared to the clinical risk score (CRS). From a registry of 251 patients treated with systemic chemotherapy and surgery for CRLM, radiomics features extracted from baseline CT images were developed to predict time to recurrence (TTR) and disease-specific survival (DSS) and compared to low- and high-risk groups based on the CRS using Kaplan-Meier estimates and Log-rank test. CRS scores provided significant separation of low- vs. high-risk CRLM patients for TTR (p = 0.002) and DSS (p = 0.002), whereas radiomics signatures improved separation by 4–6 and 6–8 orders of magnitude for TTR and DSS (p < 0.0001), respectively. CRS alone provided median survival times for TTR of 1.67 and 1.05 years for low- and high-risk groups respectively, while radiomics yielded 2.87 and 0.92 years. Radiomics signatures outperformed the CRS for stratifying CRLM patients in low- and high-risk groups. Early prediction of patient outcome may reduce CRLM patient exposure to ineffective yet toxic chemotherapy or high-risk major hepatectomies.

Publisher

Research Square Platform LLC

Reference42 articles.

1. Canadian Tissue Repository Network. CTRNet https://www.ctrnet.ca/en/resources/biobanking-software/.

2. Brenner, D. R. et al. Projected estimates of cancer in Canada in 2020. CMAJ 192, E199–E205 (2020).

3. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries;Bray F;CA. Cancer J. Clin.,2018

4. The relationship of pathologic tumor regression grade (TRG) and outcomes after preoperative therapy in rectal cancer;Vecchio FM;Int. J. Radiat. Oncol. Biol. Phys.,2005

5. Fluoropyrimidine-HAI (hepatic arterial infusion) versus systemic chemotherapy (SCT) for unresectable liver metastases from colorectal cancer;Mocellin S;Cochrane Database Syst. Rev.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3