Predicting ‘Brainage’ in the Developmental Period using Structural MRI, Morphometric Similarity, and Machine Learning

Author:

Griffiths-King Daniel J.1,Wood Amanda G.2,Novak Jan1

Affiliation:

1. Aston University

2. Murdoch Children’s Research Institute

Abstract

Abstract Brain development is regularly studied using structural MRI. Recently, studies have used a combination of statistical learning and large-scale imaging databases of healthy-children to predict an individual’s age from structural MRI. This data-driven, ‘brainage’ typically differs from the subjects chronological age, with this difference a potential measure of individual difference. Few studies have leveraged higher-order or connectomic representations of structural MRI data for this brainage approach. We leveraged morphometric similarity as a network-level approach to structural MRI to generate predictive models of age. We benchmarked these novel brain-age approaches using morphometric similarity against more typical, single feature (i.e. cortical thickness) approaches. We showed that these novel methods did not outperform cortical thickness or cortical volume measures. All models were significantly biased by age, but robust to motion confounds. The main results show that, whilst morphometric similarity mapping may be a novel way to leverage additional information from a T1-weighted structural MRI beyond individual features, in the context of a brain-age framework, morphometric similarity does not explain more variance than individual structural features. Morphometric similarity as a network-level approach to structural MRI may be poorly positioned to study individual differences in brain development in healthy individuals.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3