1. Qian Li and Jianxin Li and Jiawei Sheng and Shiyao Cui and Jia Wu and Yiming Hei and Hao Peng and Shu Guo and Lihong Wang and Amin Beheshti and Philip S. Yu (2021) A Survey on Deep Learning Event Extraction: Approaches and Applications.. IEEE transactions on neural networks and learning systems 35: 6301-6321 https://api.semanticscholar.org/CorpusID:253063434
2. Vaswani, Ashish and Shazeer, Noam and Parmar, Niki and Uszkoreit, Jakob and Jones, Llion and Gomez, Aidan N and Kaiser, {\L}ukasz and Polosukhin, Illia (2017) Attention is all you need. Advances in neural information processing systems 30https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf, Curran Associates, Inc.
3. Doddington, George and Mitchell, Alexis and Przybocki, Mark and Ramshaw, Lance and Strassel, Stephanie and Weischedel, Ralph (2004) The Automatic Content Extraction ({ACE}) Program {--} Tasks, Data, and Evaluation. European Language Resources Association (ELRA), Lisbon, Portugal, http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf, May, Proceedings of the Fourth International Conference on Language Resources and Evaluation ({LREC}{'}04), Lino, Maria Teresa and Xavier, Maria Francisca and Ferreira, F{\'a}tima and Costa, Rute and Silva, Raquel
4. Adriel Dean{-}Hall and Charles L. Clarke and Nicole Simone and Jaap Kamps and Paul Thomas and Ellen Voorhees (2013) Overview of the {TREC} 2013 Contextual Suggestion Track. National Institute of Standards and Technology {(NIST)}, Gaithersburg, Maryland, USA, , dblp computer science bibliography, https://dblp.org, https://dblp.org/rec/conf/trec/Dean-HallCSKTV13.bib, Wed, 07 Jul 2021 16:44:22 +0200, http://trec.nist.gov/pubs/trec22/papers/CONTEXT.OVERVIEW.pdf, 500-302, {NIST} Special Publication, Proceedings of The Twenty-Second Text REtrieval Conference, {TREC} 2013, Gaithersburg, Maryland, USA, November 19-22, 2013, Ellen Voorhees
5. Xiang, Wei and Wang, Bang (2019) A survey of event extraction from text. IEEE Access 7: 173111--173137 https://doi.org/10.1109/ACCESS.2019.2956831, Task analysis;Data mining;Natural language processing;Machine learning;Knowledge based systems;Social network services;Feature extraction;Event extraction;event extraction tasks;event corpus;natural language processing, IEEE