Solar cell parameters extraction, with less than 10 % error, refining the Co-Content function through an integration of a polynomial fit of I-Isc, in the case of constant percentage noise, and a percentage noise of the maximum current, Imax.  Part 1: theoretical analysis and proposal

Author:

Rangel-Kuoppa Victor-Tapio1

Affiliation:

1. Lancaster University

Abstract

Abstract

In this Part 1 article of this series of articles, a new methodology to refine the Co-Content function \(\left(CC\left(V,I\right)\right)\) is proposed, consisting on fitting the current minus the short-circuit current \((I-{I}_{sc})\), to an \(N-1\) order polynomial, where \({N}_{points}=N\), is the number of measured current-voltage \(\left(IV\right)\) points, and integrating it to calculate \(CC\left(V,I\right)\). The shunt resistance \(\left({R}_{sh}\right)\), the series resistance \(\left({R}_{s}\right)\), the ideality factor \(\left(n\right)\), the light current \(\left({I}_{lig}\right)\), and the saturation current \(\left({I}_{sat}\right)\), are then deduced, in the case of a constant percentage noise or a percentage noise of the maximum current \(\left({I}_{max}\right)\). In the former case, \({R}_{s}\), \({R}_{sh}, n, \text{a}\text{n}\text{d} {I}_{lig},\) can be deduced with less than 10% error, using only \({P}_{V}=\)51 \(\frac{number of points}{V}\), even if the noise is as large as \({p}_{n}=0.1 \text{\%}\), with a computation time around 80 ms. \({I}_{sat}\) needs \({p}_{n}=0.05 \text{\%}\) or less, and \({P}_{V}\) equal or larger than 501 \(\frac{number of points}{V}\). For the latter case, \({R}_{s}\), \(\text{a}\text{n}\text{d} {I}_{lig},\) can be obtained with less than 10% error, using only \({P}_{V}=\)251 \(\frac{number of points}{V}\), and \({p}_{n}=0.1 \text{\%}\), or smaller, with total computation time around 49 s. \({R}_{sh}, {I}_{sat}, \text{a}\text{n}\text{d} n\) needs that \({p}_{n}\le 0.05 \text{\%}\), and \({P}_{V}=\) 751 \(\frac{number of points}{V}\) or larger. A computation time expression of the form \(time=E{{N}_{points}}^{m}\), is deduced. The methodology proposed in this article is appliable to unevenly/randomly distributed IV data points, and it is implemented in Part 2 in solar cells’ and photovoltaic modules’ experimental \(IV\) reported in the literature, to deduce their five solar cell parameters.

Publisher

Springer Science and Business Media LLC

Reference62 articles.

1. The roles of global warming and Arctic Oscillation in the winter 2020 extremes in East Asia;Kim S-H;Environ. Res. Lett.,2022

2. On the verge of dangerous anthropogenic interference with the climate system?;Kriegler E;Environ. Res. Lett.,2007

3. Catastrophic climate change and the collapse of human societies;Peñuelas J;National Science Review,2023

4. How to plot the climate catastrophe;Buchanan M;Nature Physics,2023

5. H. Brugger, W. Eichhammer, N. Mikova, E. Dönitz, Energy Efficiency Vision 2050: How will new societal trends influence future energy demand in the European countries?. Energy Policy, 152, 112216 (2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3