Model uncertainty and decision making: Predicting the Impact of COVID-19 Using the CovidSim Epidemiological Code

Author:

Edeling Wouter1,Hamid Arabnejad2,Sinclair Robert3,Suleimenova Diana2,Gopalakrishnan Krishnakumar3ORCID,Bosak Bartosz4,Groen Derek2,Mahmood Imran2,Crommelin Daan5,Coveney Peter3

Affiliation:

1. Centrum Wiskunde & Informatica

2. Brunel University London

3. University College London

4. Poznan Supercomputing and Network Center

5. University of Amsterdam

Abstract

Abstract The severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) virus has rapidly spread worldwide since December 2019, and early modelling work of this pandemic has assisted in identifying effective government interventions. The UK government relied in part on the CovidSim model developed by the MRC Centre for Global Infectious Disease Analysis at Imperial College London, to model various non-pharmaceutical intervention strategies, and guide its government policy in seeking to deal with the rapid spread of the COVID-19 pandemic during March and April 2020. CovidSim is subject to different sources of uncertainty, namely parametric uncertainty in the inputs, model structure uncertainty (i.e., missing epidemiological processes) and scenario uncertainty, which relates to uncertainty in the set of conditions under which the model is applied. We have undertaken an extensive parametric sensitivity analysis and uncertainty quantification of the current CovidSim code. From the over 900 parameters that are provided as input to CovidSim, we identified a key subset of 19 parameters to which the code output is most sensitive. We find that the uncertainty in the code is substantial, in the sense that imperfect knowledge in these inputs will be magnified to the outputs, up to the extent of ca. 300%. Most of this uncertainty can be traced back to the sensitivity of three parameters. Compounding this, the model can display significant bias with respect to observed data, such that the output variance does not capture this validation data with high probability. We conclude that quantifying the parametric input uncertainty is not sufficient, and that the effect of model structure and scenario uncertainty cannot be ignored when validating the model in a probabilistic sense.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3