Fast and lightweight automatic lithology recognition based on efficient vision transformer network

Author:

Guo Yan1,Li Zhuowu1,Liu Fujiang1,Lin Weihua1,Liu Hongchen1,Shao Quansen1,Zhang Dexiong1,Liang Weichao1,Su Junshun2,Gao Qiankai2

Affiliation:

1. China University of Geosciences

2. China Geological Survey

Abstract

Abstract Traditional lithology classification methods require the expertise of appraisers and a variety of complex measuring instruments, are easily influenced by staff experience, and are excessively labor-intensive. In order to solve the previous problems, some studies have utilized rock images and intelligent algorithms to automatically recognize rocks. However, the models for automatic lithology recognition rely on more powerful devices and cannot be applied to most edge lightweight devices. To address this problem, we deeply extend our previous research work and, based on the previous training framework, propose an automatic lithology identification method (Rock-ConViT) based on an efficient visual converter, and design and implement the training and application flow framework of the method, which requires less than 720MB of device memory and 1.6GB of graphics memory, with an accuracy rate of 94.75%.

Publisher

Research Square Platform LLC

Reference39 articles.

1. Arya S (1994) An optimal algorithm for approximate nearest neighbor searching fixed dimensions. " Society for Industrial and Applied Mathematics

2. Baraboshkin EE, Ismailova LS, Orlov DM, Zhukovskaya EA, Kalmykov GA, Khotylev OV, Baraboshkin EY, Koroteev DA (2019) "Deep Convolutions for In-Depth Automated Rock Typing." Computers & Geosciences

3. Cai H, Li J, Hu M, Gan C, Han S (2023) EfficientViT: Lightweight Multi-Scale Attention for High-Resolution Dense Prediction. Proceedings of the IEEE/CVF International Conference on Computer Vision

4. Dai Z, Liu H, Le QV, Tan M (2021) "CoAtNet: Marrying Convolution and Attention for All Data Sizes."

5. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Houlsby N (2020) An Image is Worth 16x16 Words. Transformers for Image Recognition at Scale."

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3