Affiliation:
1. Shengjing Hospital of China Medical University
2. GE Healthcare
Abstract
Abstract
Background.
Some SPNs as early manifestations of lung cancer, it is difficult to determine its nature, which brings great trouble to clinical diagnosis and treatment. Radiomics can deeply explore the essence of images and provide clinical decision support for clinicians. The purpose of our study was to explore the effect of positron emission tomography (PET) with 2-deoxy-2-[fluorine-18] fluoro-D-glucose integrated with computed tomography (CT; 18F-FDG-PET/CT) combined with radiomics for predicting probability of malignancy of solitary pulmonary nodules (SPNs).
Methods.
We retrospectively enrolled 190 patients with SPNs confirmed by pathology from January 2013 to December 2019 in our hospital. SPNs were benign in 69 patients and malignant in 121 patients. Patients were randomly divided into a training or testing group at a ratio of 7:3. Three-dimensional regions of interest (ROIs) were manually outlined on PET and CT images, and radiomics features were extracted. Synthetic minority oversampling technique (SMOTE) method was used to balance benign and malignant samples to a ratio of 1:1. In the training group, least absolute shrinkage and selection operator (LASSO) regression analyses and Spearman correlation analyses were used to select the strongest radiomics features. Three models including PET model, CT model, and joint model were constructed using multivariate logistic regression analysis. Receiver operating characteristic (ROC) curves, calibration curves, and decision curves were plotted to evaluate diagnostic efficiency, calibration degree, and clinical usefulness of all models in training and testing groups.
Results.
The estimative effectiveness of the joint model was superior to the CT or PET model alone in the training and testing groups. For the joint model, CT model, and PET model, area under the ROC curve was 0.929, 0.819, 0.833 in the training group, and 0.844, 0.759, 0.748 in the testing group, respectively. Calibration and decision curves showed good fit and clinical usefulness for the joint model in both training and testing groups.
Conclusion.
Radiomics models constructed by combining PET and CT radiomics features are valuable for distinguishing benign and malignant SPNs. The combined effect is superior to qualitative diagnoses with CT or PET radiomics models alone.
Publisher
Research Square Platform LLC