An 18F-FDG-PET/CT-based radiomics signature for estimating malignance probability of Solitary Pulmonary Nodule

Author:

Zheng Jingchi1,Hao Yue1,Guo Yan2,Du Ming1,Wang Pengyuan1,Xin Jun1

Affiliation:

1. Shengjing Hospital of China Medical University

2. GE Healthcare

Abstract

Abstract Background. Some SPNs as early manifestations of lung cancer, it is difficult to determine its nature, which brings great trouble to clinical diagnosis and treatment. Radiomics can deeply explore the essence of images and provide clinical decision support for clinicians. The purpose of our study was to explore the effect of positron emission tomography (PET) with 2-deoxy-2-[fluorine-18] fluoro-D-glucose integrated with computed tomography (CT; 18F-FDG-PET/CT) combined with radiomics for predicting probability of malignancy of solitary pulmonary nodules (SPNs). Methods. We retrospectively enrolled 190 patients with SPNs confirmed by pathology from January 2013 to December 2019 in our hospital. SPNs were benign in 69 patients and malignant in 121 patients. Patients were randomly divided into a training or testing group at a ratio of 7:3. Three-dimensional regions of interest (ROIs) were manually outlined on PET and CT images, and radiomics features were extracted. Synthetic minority oversampling technique (SMOTE) method was used to balance benign and malignant samples to a ratio of 1:1. In the training group, least absolute shrinkage and selection operator (LASSO) regression analyses and Spearman correlation analyses were used to select the strongest radiomics features. Three models including PET model, CT model, and joint model were constructed using multivariate logistic regression analysis. Receiver operating characteristic (ROC) curves, calibration curves, and decision curves were plotted to evaluate diagnostic efficiency, calibration degree, and clinical usefulness of all models in training and testing groups. Results. The estimative effectiveness of the joint model was superior to the CT or PET model alone in the training and testing groups. For the joint model, CT model, and PET model, area under the ROC curve was 0.929, 0.819, 0.833 in the training group, and 0.844, 0.759, 0.748 in the testing group, respectively. Calibration and decision curves showed good fit and clinical usefulness for the joint model in both training and testing groups. Conclusion. Radiomics models constructed by combining PET and CT radiomics features are valuable for distinguishing benign and malignant SPNs. The combined effect is superior to qualitative diagnoses with CT or PET radiomics models alone.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3