Understanding the social determinants of child mortality in Latin America over the last two decades: a machine learning approach

Author:

Chivardi Carlos1,Sosa Alejandro Zamudio2,Cavalcanti Daniella Medeiros3,Ordoñez José Alejandro3,Diaz Juan Felipe4,Zuluaga Daniela4,Almeida Cristina5,Serván-Mori Edson6,Hessel Philipp4,Moncayo Ana L.5,Rasella Davide3

Affiliation:

1. University of York

2. National Autonomous University of Mexico

3. Federal University of Bahia (UFBA)

4. Universidad de Los Andes

5. Pontificia Universidad Católica del Ecuador

6. National Institute of Public Health (INSP)

Abstract

Abstract The reduction of child mortality rates remains a significant global public health challenge, particularly in regions with high levels of inequality such as Latin America. We used machine learning (ML) algorithms to explore the relationship between social determinants and child under-5 mortality rates (U5MR) in Brazil, Ecuador, and Mexico over two decades. We created a municipal-level cohort from 2000 to 2019 and trained a random forest model (RF) to estimate the relative importance of social determinants in predicting U5MR. We conducted a sensitivity analysis training two more ML models and presenting the mean square error (MSE), root mean square error (RMSE), and median absolute deviation (MAD). Our findings indicate that poverty, illiteracy, and the Gini index were the most important variables for predicting U5MR according to the RF. Furthermore, non-linear relationships were found mainly for Gini index and U5MR. Our study suggests that long-term public policies to reduce U5MR in Latin America should focus on reducing poverty, illiteracy, and socioeconomic inequalities. This research provides important insights into the relationships between social determinants and child mortality rates in Latin America. The use of ML algorithms, combined with large longitudinal data, allowed us to evaluate the effects of social determinants on health more carefully than traditional models.

Publisher

Research Square Platform LLC

Reference30 articles.

1. Peranovich, A., Andrada, M. & Bertone, C. Mortalidad infantil, causas y determinantes. Una perspectiva comparada entre la ciudad de Córdoba (Argentina) y Campiñas (Brasil), para el período 2000–2005. in III Congreso de la Asociación Latinoamericana de Población (2008).

2. Global, regional, national, and selected subnational levels of stillbirths, neonatal, infant, and under-5 mortality, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015;Wang H;The Lancet,2017

3. The evidence base for social determinants of health as risk factors for infant mortality: a systematic scoping review;Reno R;J Health Care Poor Underserved,2018

4. Disparities in NICU quality of care: a qualitative study of family and clinician accounts;Sigurdson K;Journal of Perinatology,2018

5. Ehrenthal, D. B., Kuo, H.-H. D. & Kirby, R. S. Infant Mortality in Rural and Nonrural Counties in the United States. Pediatrics 146, (2020).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3