Numerical and experimental investigation of the ultrasonic vibrations effects on the tube hydroforming process in a die with a square cross-section

Author:

Shahri Seyyed Ehsan Eftekhari,Lakhi Mohamad,Doostabad Iman Taheri

Abstract

Abstract The use of tube hydroforming process to produce integrated parts is growing in various industries. In this research, the hydroforming process has been used to convert the circular cross-section of the tube into a square one. In this process, due to the high hydrostatic pressure of the fluid, the friction in the contact area between the tube and the die surface increases significantly. High friction prevents the metal flowing of the tube material on the die surface and therefore it becomes very difficult to completely form the tube inside the die and obtain sharp corners. In this research, in order to improve the tube formability, applying ultrasonic vibrations to the hydroforming die has been used, which causes a temporary gap to be created in the contact surface of the tube and the die, and therefore the amount of friction is reduced and the tube material can slide more easily. By developing a 3D finite element model, the ultrasonic tube hydroforming process was evaluated. Modal analysis was used to evaluate the different shape modes of the die. The effects of ultrasonic vibrations on the deformation process have been evaluated using two variables: corner radius of square die and average wall thickness. An ultrasonic hydroforming setup was designed to form the annealed copper tube and was stimulated using selected resonance frequencies. The results of the finite element model were validated with the deformed tube in the experimental test. After confirming the results, the numerical model was used to evaluate the process parameters.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3