Hybridization of papain molecules and DNA- wrapped single-walled carbon nanotubes evaluated by atomic force microscopy in fluids

Author:

Kitamura Masaki1,Umemura Kazuo1

Affiliation:

1. Tokyo University of Science

Abstract

Abstract Although various conjugates of single-walled carbon nanotubes (SWNTs) and biomolecules, such as nanobiosensors and nanobiodevices, have been reported, the conjugation of papain and SWNTs have not been reported because of the formation of unexpected aggregates. In this study, atomic force microscopy (AFM) in liquid was used to investigate the interactions between papain and DNA-wrapped SWNTs (DNA–SWNTs) at two different pH values (pH 3.0 and 10.5). The direct AFM observation of the mixture of papain and DNA–SWNTs confirmed the aggregation of papain molecules with DNA–SWNTs in the buffer solutions. The numerous and non-uniform adsorption of papain molecules onto DNA–SWNTs was more pronounced at pH 3.0 than that at pH 10.5. Furthermore, thick conjugates appeared when papain and DNA–SWNTs were simultaneously mixed. The near-infrared photoluminescence spectra of the SWNTs drastically changed when the papain molecules were injected into the DNA–SWNT suspension at pH 3.0. Thus, the regulation of electrostatic interactions is a key aspect in preparing optimal conjugates of papain and DNA–SWNTs. Furthermore, although previous papers reported AFM images of dried samples, this study demonstrates the potential of AFM in liquid in evaluating individual bioconjugates of SWNTs.

Publisher

Research Square Platform LLC

Reference48 articles.

1. Scanning probe microscopy;Lillehei PT;Analytical chemistry,2000

2. Single molecular observation of DNA and DNA complexes by atomic force microscopy;Matsumoto T;Current Pharmaceutical Biotechnology,2012

3. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science;Niemeyer CM;Angewandte Chemie International Edition,2001

4. Walter, N. G. Single molecule tools, part B: super-resolution, particle tracking, multiparameter, and force based methods. (Academic Press, 2010).

5. scanning force microscopy;Bustamante C;Biology Physics Today,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3