A Siamese Deep Learning Framework for Efficient Hardware Trojan Detection Using Power Side-Channel Data

Author:

Nasr Abdurrahman1,mohamed khalil1,shenawy Ayman El1,Abdulmageed Mohamed Z.1

Affiliation:

1. Al Azhar University

Abstract

Abstract Hardware Trojans (HTs) are malicious alterations to the circuitry of integrated circuits (ICs), enabling unauthorized access, data theft, operational disruptions, or even physical harm. Detecting Hardware Trojans (HTD) is paramount for ensuring IC security. This paper introduces a novel Siamese neural network (SNN) framework for non-destructive HTD. The proposed framework can detect HTs by processing power side-channel signals without the need for a golden model of the IC. To obtain the best results, different neural network models such as Convolutional Neural Network (CNN), Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM) are integrated individually with SNN. These models are trained on the extracted features from the Trojan Power & EM Side-Channel dataset. The results show that the Siamese LSTM model achieved the highest accuracy of 86.78%, followed by the Siamese GRU model with 83.59% accuracy and the Siamese CNN model with 73.54% accuracy. The comparison shows that of the proposed Siamese LSTM is a promising new approach for HTD and outperform the state-of-the-art methods.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3