Effect of matrix Self-Healing on the Bond-Slip Behavior of Micro Steel Fibers in Ultra High-Performance Concrete

Author:

ALOBAIDI SALAM1,Al-Obaidi Salam1,He Shan2,Schlangen Erik2,Ferrara Liberato1

Affiliation:

1. Politecnico di Milano

2. TUDelft: Technische Universiteit Delft

Abstract

Abstract This study investigates the bond-slip behavior of micro steel fibers embedded into an Ultra High-Performance Concrete (UHPC) matrix as affected by the self-healing of the same matrix in different exposure conditions. The UHPC matrix contains a crystalline admixture as promoter of the autogenous self-healing specially added to enhance the durability in the cracked state. To the aforesaid purpose, some samples were partially pre-damaged with controlled preload (fiber pre-slip at different levels) and subjected to one-month exposure in 3.5% NaCl aqueous solution and in tap water to study the fiber corrosion, if any, and the effects of self-healing; after that, they were subjected to a pull-out test, to be compared with the behavior of analogous non pre-slipped samples undergoing the same curing history. Moreover, some samples were cured in the chloride solution, intended to simulate a marine environment, to study the effect of marine curing on the pull-out behavior of steel fiber. The steel fiber corrosion and self-healing products attached on the surface of steel fiber were analyzed via the Scanning Electron Microscopy (SEM), and Energy -Dispersive Spectroscopy (EDS). The results indicate that the new healed particles formed on the highly damaged fiber-matrix interface significantly enhance the friction phase of the bond-slip behavior and result into a significant residual capacity compared to non-pre-slipped specimens. On the other hand, the self-healing effect in specimens subjected to low damage pre-slip contributed more to the chemical adhesion region of the bond-slip behavior. Owning to the dense microstructure of the matrix, curing in 3.5% NaCl aqueous solution was not found to significantly affect the pull-out resistance as compared for the samples cured in tap water.

Publisher

Research Square Platform LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3