Identifying potential biomarkers of Ferroptosis for Osteoporosis based on using TMT proteomics and bioinformatics analysis
Author:
su Hui1, Xue Haipeng2, Guo WenXuan1, Yu jinsheng1, Xu Zhanwang2, Zhuang Rujie1, Tan Guoqing2
Affiliation:
1. Zhejiang Chinese Medical University 2. Affiliated Hospital of Shandong University of Traditional Chinese Medicine
Abstract
Abstract
Background: primary osteoporosis has increasingly become a major problem affecting human health, and its specific pathogenic mechanism is complex. Ferroptosis,as a research hotspot, has found play an important role in the pathogenesis of primary osteoporosis, in order to explore the connection and specific target genes between Ferroptosis and primary osteoporosis .
Methods:We used TMT proteomics and bioinformatics analysis to elucidate the connection and key targets of the Ferroptosis pathway in the Ovariectomized osteoporosis rat model.Forty 12-week-old female SD rats were used in the study, 20 rats were ovariectomized as the OVX group and 20 rats as the SHAM group , after the rats were sacrificed, and left femur of rat was removed for computerized tomography testing, and right femurs were used for hematoxylin and eosin staining. Finally, we extract bone tissue protein for TMT proteomics analysis and western spotting verification.
Results:The proteomic results of the OVX and SHAM groups showed that 133 proteins were significantly changed, of which 91 were up-regulated proteins and 42 were down-regulated proteins, TXN, TMSB4X, TFRC, TF, RELA, PARP14, CP, CAPG, and ADIPOQ. The expression of key proteins in bone tissue was detected by Western blotting.TFR1 and TF expression were upregulated, and the expression levels in Cp and BMP-2 were downregulated.
Conclusions: The TMT proteomics and functional enrichment analyses in our study confirmed that in osteoporosis, lipid metabolism is disturbed causing the appearance of oxidative stress accompanied by an imbalance in iron homeostasis.
Publisher
Research Square Platform LLC
Reference28 articles.
1. Lane JM, Russell L, Khan SN. Osteoporosis. Clin Orthop Relat Res. 2000;(372):139 – 50. doi: 10.1097/00003086-200003000-00016. PMID: 10738423. 2. Kanis JA, Cooper C, Rizzoli R, Reginster JY; Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis (ESCEO) and the Committees of Scientific Advisors and National Societies of the International Osteoporosis Foundation (IOF). European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019;30(1):3–44. doi: 10.1007/s00198-018-4704-5. Epub 2018 Oct 15. Erratum in: Osteoporos Int. 2020;31(1):209. Erratum in: Osteoporos Int. 2020;31(4):801. PMID: 30324412; PMCID: PMC7026233. 3. Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B, Wang G. Ferroptosis: past, present and future. Cell Death Dis. 2020;11(2):88. doi: 10.1038/s41419-020-2298-2. PMID: 32015325; PMCID: PMC6997353. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156(1–2):317–331. doi: 10.1016/j.cell.2013.12.010. PMID: 24439385; PMCID: PMC4076414 [5] Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266–282. doi: 10.1038/s41580-020-00324-8. Epub 2021 Jan 25. PMID: 33495651; PMCID: PMC8142022. [6] Lu J, Yang J, Zheng Y, Chen X, Fang S. Extracellular vesicles from endothelial progenitor cells prevent steroid-induced osteoporosis by suppressing the ferroptotic pathway in mouse osteoblasts based on bioinformatics evidence. Sci Rep. 2019;9(1):16130. doi: 10.1038/s41598-019-52513-x. PMID: 31695092; PMCID: PMC6834614. [7] Wang X, Ma H, Sun J, Zheng T, Zhao P, Li H, Yang M. Mitochondrial Ferritin Deficiency Promotes Osteoblastic Ferroptosis Via Mitophagy in Type 2 Diabetic Osteoporosis. Biol Trace Elem Res. 2022;200(1):298–307. doi: 10.1007/s12011-021-02627-z. Epub 2021 Feb 16. PMID: 33594527. [8] hao H., Ito Y., Chappel J., Andrews N. W., Teitelbaum S. L., Ross F. P. Synaptotagmin VII regulates bone remodeling by modulating osteoclast and osteoblast secretion. Developmental Cell. 2008;14(6):914–925. doi: 10.1016/j.devcel.2008.03.022 [9] Ishii K. A., Fumoto T., Iwai K., et al. Coordination of PGC-1β and iron uptake in mitochondrial biogenesis and osteoclast activation. Nature Medicine. 2009;15(3):259–266. doi: 10.1038/nm.1910 [10] Wang X., Ma H., Sun J., et al. Mitochondrial ferritin deficiency promotes osteoblastic ferroptosis via mitophagy in type 2 diabetic osteoporosis. Biological Trace Element Research. 2022;200(1):298–307. doi: 10.1007/s12011-021-02627-z [11] Ni S, Yuan Y, Qian Z, Zhong Z, Lv T, Kuang Y, Yu B. Hypoxia inhibits RANKL-induced ferritinophagy and protects osteoclasts from ferroptosis. Free Radic Biol Med. 2021;169:271–282. doi: 10.1016/j.freeradbiomed.2021.04.027. Epub 2021 Apr 22. PMID: 33895289 [12] Jia Q, Wang T, Wang X, Xu H, Liu Y, Wang Y, Shi Q, Liang Q. Astragalin Suppresses Inflammatory Responses and Bone Destruction in Mice With Collagen-Induced Arthritis and in Human Fibroblast-Like Synoviocytes. Front Pharmacol. 2019;10:94. doi: 10.3389/fphar.2019.00094. PMID: 30809149; PMCID: PMC6379316 [13] Das UN. Essential fatty acids and osteoporosis. Nutrition. 2000;16(5):386–390. doi:10.1016/s0899-9007(00)00262-8 [14] Anam AK, Insogna K. Update on Osteoporosis Screening and Management. Med Clin North Am. 2021;105(6):1117–1134. doi:10.1016/j.mcna.2021.05.016 [15] Wu Y, Zhang S, Gong X, Tam S, Xiao D, Liu S, Tao Y. The epigenetic regulators and metabolic changes in ferroptosis-associated cancer progression. Mol Cancer. 2020;19(1):39. doi: 10.1186/s12943-020-01157-x. PMID: 32103754; PMCID: PMC7045519. [16] Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci. 2016;73:2195–2209. doi: 10.1007/s00018-016-2194-1 [17] Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–1072. doi: 10.1016/j.cell.2012.03.042 [18] Fan Y, Han Z, Lu X, et al. Identification of Milk Fat Metabolism-Related Pathways of the Bovine Mammary Gland during Mid and Late Lactation and Functional Verification of the ACSL4 Gene. Genes (Basel). 2020;11(11):1357. Published 2020 Nov 16. doi:10.3390/genes11111357 [19] Yuan Z, Li Q, Luo S, et al. PPARγ and Wnt Signaling in Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells. Curr Stem Cell Res Ther. 2016;11(3):216–225. doi:10.2174/1574888x10666150519093429 [20] Tahmoorespur M., Ghazanfari S., Nobari K. Evaluation of adiponectin gene expression in the abdominal adipose tissue of broiler chickens: Feed restriction, dietary energy, and protein influences adiponectin messenger ribonucleic acid expression. Poultry Science. 2010;89(10):2092–2100. doi: 10.3382/ps.2010-00772 [21] Luo Xiang-Hang, Guo Li-Juan, Xie Hui, Yuan Ling-Qing, Wu Xian-Ping, Zhou Hou-De, Liao Er-Yuan. Adiponectin Stimulates RANKL and Inhibits OPG Expression in Human Osteoblasts Through the MAPK Signaling Pathway. Journal of Bone and Mineral Research. 2006;21(10):1648–1656. doi: 10.1359/jbmr.060707]] [22] Yu S, Li P, Li B, Miao D, Deng Q. RelA promotes proliferation but inhibits osteogenic and chondrogenic differentiation of mesenchymal stem cells. FEBS Lett. 2020;594(9):1368–1378. doi:10.1002/1873-3468.13739 4. Guan X, He Y, Wei Z, Shi C, Li Y, Zhao R, Pan L, Han Y, Hou T, Yang J. Crosstalk between Wnt/β-catenin signaling and NF-κB signaling contributes to apical periodontitis. Int Immunopharmacol. 2021;98:107843. doi: 10.1016/j.intimp.2021.107843. Epub 2021 Jun 19. PMID: 34153668 5. Miricescu D, Totan A, Calenic B, Mocanu B, Didilescu A, Mohora M, Spinu T, Greabu M. Salivary biomarkers: relationship between oxidative stress and alveolar bone loss in chronic periodontitis. Acta Odontol Scand. 2014;72(1):42 – 7. doi: 10.3109/00016357.2013.795659. Epub 2013 Jul 22. PMID: 23869629
|
|