Regulation of trophic factors in the choroid plexus of aged mice

Author:

Sadanandan Jayanarayanan1,Sathyanesan Monica1,Newton Samuel S1

Affiliation:

1. University of South Dakota

Abstract

Abstract Background The choroid plexus (CP) is an understudied tissue in the central nervous system (CNS), primarily implicated in cerebrospinal fluid (CSF) production. Additionally, CP produces numerous neurotrophic factors (NTF), which circulate to different regions of the brain. Regulation of NTF in the CP during natural aging has yet to be discovered. Here, we investigated the age and gender-specific transcription of NTFs along with the changes in the tight junctional proteins (TJPs) and water channel protein Aquaporin (AQP1). Methods We used male and female mice for our study. We analyzed neurotrophic factor gene expression patterns using quantitative and digital droplet PCR at three different time points: mature adult, middle-aged, and aged. Additionally, we used immunohistochemical analysis (IHC) to evaluate in vivo protein expression. We further investigated the cellular phenotype of these NTFS, TJP, and water channel proteins in the mouse CP by co-labeling them with the classical vascular marker, Isolectin B4, and epithelial cell marker, plectin. Results Aging significantly altered the NTF's gene expression in the CP. Brain-derived neurotrophic factor (BDNF), Midkine, VGF, Insulin-like growth factor (IGF1), IGF2, klotho, Erythropoietin, and its receptor were reduced in the aged CP of males and females. Vascular endothelial growth factor (VEGF) transcription was gender-specific; in males, gene expression is unchanged in the aged CP, while females showed an age-dependent reduction. Age-dependent changes in VEGF localization were evident, from vasculature to epithelial cells. IGF2 and klotho localized in the basolateral membrane of the CP and showed an age-dependent reduction in epithelial cells. Water channel protein AQP1 localized in the tip of epithelial cells and showed an age-related reduction in mRNA and protein levels. TJP’s JAM, CLAUDIN1, CLAUDIN2, and CLAUDIN5 were reduced in aged mice. Conclusions Our study highlights transcriptional level changes in the CP during aging. The age-related transcriptional changes exhibit similarities as well as gene-specific differences in the CP of males and females. Altered transcription of the water channel protein AQP1 and TJPs could be involved in reduced CSF production during aging. Importantly, reduction in the neurotrophic factors and longevity factor Klotho can play a role in regulating brain aging.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3