Flow Clotometry: Measuring Amyloid Microclots in ME/CFS, Long COVID, and Healthy Samples with Imaging Flow Cytometry

Author:

Pretorius Etheresia1ORCID,Nunes Massimo1,pretorius Jan,Kell Douglas2ORCID

Affiliation:

1. Stellenbosch University

2. University of Liverpool

Abstract

Abstract

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) has received more attention since the characterization of Long COVID (LC), a condition somewhat similar in symptom presentation and, to some extent, pathophysiological mechanisms. A prominent feature of LC pathology is amyloid, fibrinolysis-resistant fibrin(ogen) fragments, termed microclots. Despite prior identification of microclots in ME/CFS, quantitative analysis has remained challenging due to the reliance on representative micrographs and software processing for estimations. Addressing this gap, the present study uses a cell-free imaging flow cytometry approach, optimized for the quantitative analysis of Thioflavin T-stained microclots, to precisely measure microclot concentration and size distribution across ME/CFS, LC, and healthy cohorts. We refer to our cell-free flow cytometry technique for detecting microclots as 'flow clotometry'. We demonstrate significant microclot prevalence in ME/CFS and LC, with LC patients exhibiting the highest concentration (18- and 3-fold greater than the healthy and ME/CFS groups, respectively). This finding underscores a common pathology across both conditions, emphasizing a dysregulated coagulation system. Moreover, relating to microclot size distribution, the ME/CFS group exhibited a significantly higher prevalence across all area ranges when compared to the controls, but demonstrated a significant difference for only a single area range when compared to the LC group. This suggests a partially overlapping microclot profile in ME/CFS relative to LC, despite the overall higher concentration in the latter. The present study paves the way for prospective clinical application that aims to efficiently detect, measure and treat microclots.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3