SequenceCraft: Machine learning-based resource for exploratory analysis of RNA-cleaving deoxyribozymes

Author:

Eremeyeva M.1,Din Y.1,Shirokii N.1,Serov N.1

Affiliation:

1. ITMO University

Abstract

Abstract

Deoxyribozymes or DNAzymes represent artificial short DNA sequences bearing many catalytic properties. In particular, DNAzymes able to cleave RNA sequences have a huge potential in gene therapy and sequence-specific analytic detection of disease markers. This activity is provided by catalytic cores able to perform site-specific hydrolysis of the phosphodiester bond of an RNA substrate. However, the vast majority of existing DNAzyme catalytic cores have low efficacy in in vivo experiments, whereas SELEX based on in vitro screening offers long and expensive selection cycle with the average success rate of ~ 30%, moreover not allowing the direct selection of chemically modified DNAzymes, which were previously shown to demonstrate higher activity in vivo. Therefore, there is a huge need in in silico approach for exploratory analysis of RNA-cleaving DNAzyme cores to drastically ease the discovery of novel catalytic cores with superior activities. In this work, we develop machine learning based open-source platform SequenceCraft allowing experimental scientists to perform DNAzyme exploratory analysis via quantitative kobs estimation and data analysis tools. This became possible with the development of unique curated database of > 350 RNA-cleaving catalytic cores, property-based sequence representations allowing to work with both conventional and chemically modified nucleotides, and optimized kobs predicting algorithm achieving Q2 > 0.9. These findings represent the first step towards fully in silico exploratory analysis of catalytic DNAzymes.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3