Changes in brain structure and function following exposure to oral LSD during adolescence: A multimodal MRI study

Author:

Harris Lila1,Smith Zachary1,Ortiz Richard J.2,Athreya Deepti1,Chang Arnold1,Kulkarni Praveen P.1,Ferris Craig F.1

Affiliation:

1. Northeastern Univ

2. New Mexico State University

Abstract

Abstract

Background: LSD is a hallucinogen with complex neurobiological and behavioral effects. Underlying these effects are changes in brain neuroplasticity. This is the first study to follow the developmental changes in brain structure and function following LSD exposure in periadolescence. Methods: Female and male mice were given vehicle, single or multiple treatments of 3.3 µg of LSD by oral gavage starting on postnatal day 51. Between postnatal days 90-120 mice were imaged and tested for cognitive and motor behavior. MRI data from voxel-based morphometry, diffusion weighted imaging, and BOLD resting state functional connectivity were registered to a mouse 3D MRI atlas with 139 brain regions providing site-specific differences in global brain structure and functional connectivity between experimental groups. Results: Motor behavior and cognitive performance were unaffected by periadolescent exposure to LSD. Differences across experimental groups in brain volume for any of the 139 brain areas were few in number and not focused on any specific brain region. Multiple exposures to LSD significantly altered gray matter microarchitecture across much of the brain. These changes were primary associated with the thalamus, sensory and motor cortices, and basal ganglia. The forebrain olfactory system and prefrontal cortex and hindbrain cerebellum and brainstem were unaffected. The functional connectivity between forebrain white matter tracts and sensorimotor cortices and hippocampus was reduced with multidose LSD exposure. Conclusion: Does early exposure to LSD in periadolescence have lasting effects on brain development? There was no evidence of LSD having consequential effects on cognitive or motor behavior when animal were evaluated as young adults 90-120 days of age. Neither were there any differences in the volume of specific brain areas between experimental conditions. The pronounced changes in indices of anisotropy across much of the brain would suggest altered gray matter microarchitecture and neuroplasticity. The reduction in connectivity in forebrain white matter tracts with multidose LSD and consolidation around sensorimotor and hippocampal brain areas requires a battery of tests to understand the consequences of these changes on behavior.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3