Utilizing Variable Auto Encoder-based TDO Optimization Algorithm for Predicting Loneliness from Electrocardiogram Signals

Author:

R Bharathi Vidhya1,Selvaraj Jerritta2

Affiliation:

1. Vels Institute of Science Technology & Advanced Studies School of Physiotherapy

2. Vel's College of Science: Vels Institute of Science Technology & Advanced Studies

Abstract

Abstract Several seniors and a substantial part of the general population are living in social isolation. This frequently occurs in vulnerability, isolation, and depression, which then have a poor impact on other health-related factors. A number of health problems, including a higher risk of cardio problems, are brought on by social isolation and loneliness. Electrocardiogram (ECG) usage for mental condition recognition enables accurate determination of a person's internal representation. The electrocardiogram (ECG) signals can be thoroughly analyzed to uncover hidden data that may be helpful for the precise identification of cardiac problems. ECG time-series information typically have great dimensions and complicated componentry. Using relevant information to guide training is among the main achievements of this type of learning. An ECG signal plays a significant part in the individual body's ability to manage behavior. Furthermore, loneliness identification is crucial since it has the worse effect on the circumstances that afflict persons. This study suggested an approach for detecting loneliness from an ECG signal to use a variable auto encoder-based optimization algorithm for ESN (VAE-OESN) technique. The suggested approach consists of three phases for identifying a person's loneliness. Firstly, Undecimated Discrete Wavelet Transform (UDWT) is used to preprocess the acquired ECG data. Next, further characteristics are extracted from the precompiled signals using a variable auto encoder. For the precise categorization of loneliness in the ECG signal, a metaheuristic optimized ESN is therefore presented. The outcomes of the tests demonstrate that the suggested system with suitable ECG representations produces improved accuracy as well as performance.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3