Metallic Conduction and Large Orbital Polarization in Ultrathin LaNiO3 Sublayer Achieved by Modulating Oxygen Octahedron Rotation in LaNiO3/CaTiO3 Superlattices

Author:

Sun Jirong1ORCID,Shi Wenxiao1,Zhang Jing2,Yu Bowen1ORCID,Zheng Jie3,Wang Mengqin1,Li Zhe3,Liu Bang-Gui4ORCID,Chen Yunzhong1ORCID,Hu Fengxia3ORCID,Shen Baogen5,Chen Yuansha6ORCID

Affiliation:

1. Institute of Physics, Chinese Academy of Sciences

2. Songshan Lake Materials Laboratory

3. Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences

4. Chinese Academy of Sciences

5. Institute of Physics of Chinese Academy of Sciences

6. Beijing National Laboratory for Condensed Matter Physics

Abstract

Abstract Artificial oxide heterostructures have provided promising platforms for the exploration of emergent quantum phases with extraordinary properties. Here, we demonstrate an effective approach to stabilize a distinct oxygen octahedron rotation (OOR) characterized by a-b-c+ in the ultrathin LaNiO3 sublayers of the LaNiO3/CaTiO3 superlattices. Unlike the a-b-c- OOR in the LaNiO3 bare film, the a-b-c+ OOR favors high conductivity, driving the LaNiO3 sublayer to metallic state even when the layer thickness is as thin as 2 unit cells (u.c.). Simultaneously, strongly preferred occupation of dx2-y2 orbital is achieved in LaNiO3 sublayers. The largest change of occupancy is as high as 35%, observed in the 2 u.c.-thick LaNiO3 sublayers sandwiched between 4 u.c.-thick CaTiO3 sublayers. X-ray absorption spectra indicate that the a-b-c+ OOR pattern of LaNiO3 achieved in the LaNiO3/CaTiO3 heterostructures has significantly enhanced the Ni-3d/O-2p hybridization, stabilizing the metallic phase in ultrathin LaNiO3 sublayers. The present work demonstrates that modulating the mode of OOR through heteroepitaxial synthesis can modify the orbital-lattice correlations in correlated perovskite oxides, revealing hidden properties of the materials.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3