Core-sheath PVDF hollow porous fibers via coaxial wet spinning for energy harvesting
Author:
Abstract
As a promising sustainable power source for intelligent electronics, flexible piezoelectric nanogenerators (PENGs) have gained significant attention for their potential applications in the Internet of Things. Here, the polyvinylidene fluoride (PVDF) fibers with a core-sheath hollow porous structure that consisting of the liquid metal (LM) as the inner electrode layer and the copper and silver nanoparticle (Cu@AgNP) as the external electrode layer are prepared via a coaxial wet spinning process to construct high-performance PVDF/LM/Cu@AgNP composite fibers. The PVDF fiber has stratified pore structure and the existence of arbitrarily deformable LM electrode, which significantly reduces the effective dielectric constant, thereby enhancing the piezoelectric properties. The results demonstrate that PVDF/LM/Cu@AgNP-PENG yields an optimal voltage output of 410 mV, providing a clear advantage over PENG by using alternative fibers. Moreover, the PVDF/LM/Cu@AgNP-PENG demonstrates an excellent charging capability for energy storage devices, being able to charge 1 µF capacitors to 10 V within 30 seconds and directly power commercial LEDs. This study demonstrates the significant potential for utilizing composite PVDF piezoelectric fibers in flexible wearable electronic devices.
Publisher
Springer Science and Business Media LLC
Reference56 articles.
1. Robust superhydrophobic wearable piezoelectric nanogenerators for self-powered body motion sensors;Su C;Nano Energy,2023
2. Wearable and self-powered sensors made by triboelectric nanogenerators assembled from antibacterial bromobutyl rubber;Zhang W;Nano Energy,2021
3. Gram-scale Y-doped ZnO and PVDF electrospun film for piezoelectric nanogenerators;Yi J;Compos Sci Technol,2021
4. Flexible Piezoelectric and Pyroelectric Nanogenerators Based on PAN/TMAB Nanocomposite Fiber Mats for Self-Power Multifunctional Sensors;Li X;ACS Appl Mater Interfaces,2022
5. Breathable Nanogenerators for an On-Plant Self-Powered Sustainable Agriculture System;Lan L;ACS Nano,2021
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3