Deep Learning for Intrusion Detection in IoT Networks

Author:

Selem Mehdi1,Jemili Farah1,Korbaa Ouajdi1

Affiliation:

1. University of Sousse

Abstract

Abstract

The rapid proliferation of Internet of Things (IoT) devices has transformed our daily lives, introducing innovations like smart homes, wearables, and advanced industrial automation. While these interconnected systems offer convenience and efficiency, they also present significant security challenges. With the expansion of the IoT network comes an increased risk of malicious attacks, making safeguarding these networks a pressing concern. Intrusion detection serves as a crucial defense mechanism, detecting abnormal activities and triggering appropriate responses. In our study, we harness the power of ensemble learning through a technique known as bagging. By combining the strengths of Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs), we aim to capitalize on their unique advantages and enhance the overall capability of intrusion detection systems.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3