Performance Analysis of Machine Learning Techniques in Detecting Multi-intrusion Attacks

Author:

Fodja Christel Herlin Djaha1,Islam Muhammad F1

Affiliation:

1. The George Washington University

Abstract

Abstract The sophistication of network intrusion techniques presents significant challenges as to timeliness and accuracy of detection. Building on The University of Nevada Reno (UNR) Intrusion Detection Dataset (IDD), we explore the efficacy of Machine Learning (ML) techniques. The Light Gradient-Boosting Machine (LightGBM) model has an accuracy score of 0.992 and a precision of 0.99. The Extra Gradient Boost (XGBoost) and the Extremely Randomized Trees (Extra Tree) models obtain an accuracy of 0.985 and precision of 0.99. The CatBoost model (a version of Gradient Boosted Decision Trees or GBDT) has an accuracy of 0.975 and a precision of 0.98. These results are better than those of previous studies using the same data set. We also find that attacks of the type "Overflow" and "PortScan" are more likely to be detected by ML techniques than "TCP-SYN" type. Our results show the promise of using ML techniques in the realm of cybersecurity management.

Publisher

Research Square Platform LLC

Reference30 articles.

1. Pascoe, C. E. (2023). Public draft: The NIST cybersecurity framework 2.0.

2. Schwab, K. (2017). The fourth industrial revolution. New York: Crown Business.

3. Applications of artificial intelligence in machine learning: Review and prospect;Das S;International Journal of Computer Applications,2015

4. Internet of things (IoT) based robotic arm;Gawli K;Int.Res.J.Eng.Technol,2017

5. Impacts of Cyber Security and Supply Chain Risk on Digital Operations: Evidence from the Pharmaceutical Industry;Solfa FDG;International Journal of Technology, Innovation and Management (IJTIM),2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3