BRLMSESCT: Design of a Bioinspired Reinforcement Learning Model for Side-Effect Analysis of Spinal Cord Tumours

Author:

Mohanty Rajanikanta1,V Ramana T1,rout Narendra kumar2

Affiliation:

1. Jain University

2. rajendra university

Abstract

Abstract Due to improper postures, and unhealthy lifestyle of millennials, there has been an exponential increase in spinal cord related diseases. These include Slip Discs, Spine Injuries, Tumours, etc. each of which has multiple side-effects on the human body. To analyze these conditions, a wide variety of image processing models are developed by researchers. But most of these models do not analyze side-effects of spinal cord tumours on other body parts, due to which their applicability is limited when used for clinical trials. The main novelty of this work is to analyze side effects resulting due to spinal cord tumours, and to perform this task a novel Bioinspired Reinforcement Learning Model for Side-Effect Analysis of Spinal Cord Tumours is discussed in this text. The proposed model initially uses a Recurrent Neural Network (RNN) based on combination of Long-Short-Term Memory (LSTM) & Gated Recurrent Unit (GRU) for extraction of highly dense image features. These features allow the model to estimate tumour positions in Computer Tomography (CT) scans. The extracted features are classified via the RNN Model, which assists in high accuracy classification & localization of spinal cord tumours. These classification & localization results are linked with blood reports to estimate side-effects on kidney, lungs, heart activity and vitamin levels. To perform this correlation, a Grey Wolf Optimization (GWO) Model is used, which assists in linking tumour type, and size with blood report parameters. The GWO Model evaluates a fitness function, that fuses tumour levels with its side-effects on individual body parts. This fusion is done via analysis of temporal blood reports, which evaluates effects of different tumour types-and-sizes on individual body parameters. Due to a combination of GWO with LSTM & GRU based RNN, the model is capable of showcasing high accuracy of tumour classification, with better precision of correlation with side effects when compared with state-of-the-art models. It was observed that the proposed model was able to achieve 98.5% accuracy for tumour classification, 96.4% correlation precision with kidney diseases, 95.8% correlation precision with lung diseases, 96.2% correlation precision with heart diseases, and 91.5% correlation precision with vitamin deficiencies. Due to such a high performance, the model is capable of deployment for real-time clinical applications.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3