Identification of Representative Wind Power Fluctuation Patterns for Water Electrolysis Device Stress Testing - A Data Mining Approach

Author:

Choi Kyong Jin1,Kim Sanghoon1,Kwon Yongchai1,Sim Min Kyu1ORCID

Affiliation:

1. Seoul National University of Science & Technology

Abstract

Abstract

Wind power generation is expected to greatly contribute to the future of humanity as a promising source of renewable energy. However, the high variability inherent in wind is a challenge that hinders stable power generation. To utilize wind power as a primary energy source, integration with a polymer electrolyte membrane water electrolysis (PEMWE) system is proposed. Yet, PEMWE is known to suffer from degradation when exposed to input power patterns with high variability. This poses challenges to its commercialization. This necessitates stress testing with various wind power fluctuations during the production process of the devices. This study investigates representative patterns of wind power fluctuation so that these patterns can be used for the stress testing process. We employ data-mining techniques, including the Swing Door Algorithm and k-means clustering, to identify these patterns by analyzing wind power generation data at a 10-second interval. As a result, the five most representative wind power ramps are presented. This study provides practical guidelines for the development process of expensive devices for wind power generation, thereby promoting the active utilization of wind power generation.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3