Modeling Deficit Irrigation Water Demand of Maize and Potato in Eastern Germany using ERA5-Land Reanalysis Climate Time Series

Author:

Ogunsola Olawale Q.1,Bankole Abayomi O.2,Soboyejo Lukman A.3,Adejuwon Joseph O.2,Makinde Akeem A.2

Affiliation:

1. University of Toledo

2. Federal University of Agriculture

3. University of Melbourne

Abstract

Abstract ERA5-Land reanalysis (ELR) climate time series has proven useful in (hydro)meteorological studies, however, its adoption for local studies is limited due to accuracies constraints. Meanwhile, local agricultural use of ELR could help data-scarce countries by addressing gaps in (hydro)meteorological variables. This study aimed to evaluate the first applicability of the ELR climate time series for modeling maize and potato irrigation water demand (IWD) at field scale and examined the performance of ELR precipitation with bias correction (DBC) and without bias correction (WBC). Yield, actual evapotranspiration (ETa), irrigation, water balance, and crop water productivity (CWP) were evaluated using the deficit irrigation toolbox. The study found that maize (13.98–14.49 ton/ha) and potato (6.84–8.20 tons/ha) had similar mean seasonal yield under different irrigation management strategies (IMS). The Global Evolutionary Technique for OPTimal Irrigation Scheduling (GET-OPTIS_WS) IMS had the highest mean seasonal yields under DBC and WBC, while rainfall and constant IMS had the most crop failures. DBC had a higher mean seasonal ETa than WBC, except for the potato FIT and rainfall IMS. Global Evolutionary Technique for OPTimal Irrigation Scheduling: one common schedule per crop season (GET-OPTIS_OS) and GET-OPTIS_WS IMS outperformed conventional IMS in IWD by 44%. Overall, GET-OPTIS_OS and GET-OPTIS_WS performed best for maize and potato CWP in terms of IWD, scheduling, and timing. Therefore, adoption of ELR climate time series and advanced irrigation optimization strategies such as GET-OPTIS_OS and GET-OPTIS_WS can be beneficial for effective and efficient management of limited water resources, where agricultural water allocation/resource is limited.

Publisher

Research Square Platform LLC

Reference86 articles.

1. Application of the AquaCrop model in decision support for optimization of nitrogen fertilizer and water productivity of soybeans;Adeboye OB;Inform Process Agric,2021

2. Assessing the impacts of climate change on hydrology of the upper reach of the spree river: Germany;Al-Mukhtar M;Water Resour Manage,2014

3. Andales AA, Chávez JL, Bauder TA (2011) Irrigation scheduling: the water balance approach (Doctoral dissertation, Colorado State University. Libraries)

4. Arnold JG, Kiniry JR, Srinivasan R, Williams JR, Haney EB, Neitsch SL (2013) SWAT 2012 input/output documentation. Texas Water Resources Institute

5. Climate change and agriculture in South Asia: adaptation options in smallholder production systems;Aryal JP;Environ Dev Sustain,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3