Prediction of Machine Tool Spindle Assembly Quality Variation Based on the Stacking Ensemble Model

Author:

Liu Min-Sin,Kuo Ping-Huan,Chen Shyh-Leh1ORCID

Affiliation:

1. National Chung Cheng University

Abstract

Abstract This paper presents a stacking ensemble model to predict the assembly quality variation of machine tool spindles. The model uses data from 925 single-spindle inspections and extracts evaluation metrics from multiple domains to extract valuable information. Feature selection is performed using a correlation model to identify important features, and various lightweight supervised learning algorithms are applied to analyze the data. To further enhance the model's performance, a stacking ensemble approach is proposed, which combines algorithms. The proposed ensemble model achieves an accuracy rate of 85.47%, a precision rate of 86.44%, a recall rate of 85.64%, and an F1 value of 86.04%. The results demonstrate that the proposed stacking ensemble model is an effective approach for predicting the assembly quality variation of machine tool spindles, using the data available.

Publisher

Research Square Platform LLC

Reference40 articles.

1. Optimal Analysis of Performance Improvement Strategy for Mechanical System Assembly Process Based on Fault Tree Model;Li H;IEEE Access,2019

2. An exact algorithm for the mixed-model level scheduling problem;Pereira J;Int J Prod Res,2015

3. An Optimal Robotic Assembly Sequence Planning by Assembly Subsets Detection Method Using Teaching Learning-Based Optimization Algorithm;Balamurali;IEEE Trans Autom Sci Eng,2019

4. A new grouping method to minimize the surplus parts in selective assembly for complex assemblies;Kannan SM;Int J Prod Res,2001

5. Genetic algorithm for minimizing assembly variation in selective assembly;Kannan SM;Int J Prod Res,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3