The FASHION Visual Search using Deep Learning Approach

Author:

Bhoir Smita1,Patil Sunita2

Affiliation:

1. K.J. Somaiya College of Engineering

2. K.J. Somaiya Institute of Engineering & Information Technology

Abstract

Abstract In recent years, the World Wide Web (WWW) has established itself as a popular source of information. Using an effective approach to investigate the vast amount of information available on the internet is essential if we are to make the most of the resources available. Visual data cannot be indexed using text-based indexing algorithms because it is significantly larger and more complex than text. Content-Based Image Retrieval, as a result, has gained widespread attention among the scientific community (CBIR). Input into a CBIR system that is dependent on visible features of the user's input image at a low level is difficult for the user to formulate, especially when the system is reliant on visible features at a low level because it is difficult for the user to formulate. In addition, the system does not produce adequate results. To improve task performance, the CBIR system heavily relies on research into effective feature representations and appropriate similarity measures, both of which are currently being conducted. In particular, the semantic chasm that exists between low-level pixels in images and high-level semantics as interpreted by humans has been identified as the root cause of the issue. There are two potentially difficult issues that the e-commerce industry is currently dealing with, and the study at hand addresses them. First, handling manual labeling of products as well as second uploading product photographs to the platform for sale are two issues that merchants must contend with. Consequently, it does not appear in the search results as a result of misclassifications. Moreover, customers who don't know the exact keywords but only have a general idea of what they want to buy may encounter a bottleneck when placing their orders. By allowing buyers to click on a picture of an object and search for related products without having to type anything in, an image-based search algorithm has the potential to unlock the full potential of e-commerce and allow it to reach its full potential. Inspired by the current success of deep learning methods for computer vision applications, we set out to test a cutting-edge deep learning method known as the Convolutional Neural Network (CNN) for investigating feature representations and similarity measures. We were motivated to do so by the current success of deep learning methods for computer vision applications (CV). According to the experimental results presented in this study, a deep machine learning approach can be used to address these issues effectively. In this study, a proposed Deep Fashion Convolution Neural Network (DFCNN) model that takes advantage of transfer learning features is used to classify fashion products and predict their performance. The experimental results for image-based search reveal improved performance for the performance parameters that were evaluated.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3