Data mining of PubChem bioassay records reveals diverse OXPHOS inhibitory chemotypes as potential therapeutic agents against ovarian cancer

Author:

Sharma Sejal1,Feng Liping1,Boonpattrawong Nicha1,Kapur Arvinder1,Barroilhet Lisa1,Patankar Manish1,Ericksen Spencer2

Affiliation:

1. University of Wisconsin-Madison

2. University of Wisconsin-Madison, UW-Carbone Cancer Center, Wisconsin Institutes for Medical Research

Abstract

Abstract

Focused screening on target-prioritized compound sets can be an efficient alternative to high throughput screening (HTS). For most biomolecular targets, compound prioritization models depend on prior screening data or a target structure. For phenotypic or multi-protein pathway targets, it may not be clear which public assay records provide relevant data. The question also arises as to whether data collected from disparate assays might be usefully consolidated. Here, we report on the development and application of a data mining pipeline to examine these issues. To illustrate, we focus on identifying inhibitors of oxidative phosphorylation, a druggable metabolic process in epithelial ovarian tumors. The pipeline compiled 8415 available OXPHOS-related bioassays in the PubChem data repository involving 312,093 unique compound records. Application of PubChem assay activity annotations, PAINS, and Lipinski-like bioavailability filters yields 1,852 putative OXPHOS-active compounds that fall into 464 clusters. These chemotypes are diverse but have relatively high hydrophobicity and molecular weight but lower complexity and drug-likeness. These chemotypes show a high abundance of bicyclic ring systems and oxygen containing functional groups including ketones, allylic oxides (alpha/beta unsaturated carbonyls), hydroxyl groups, and ethers. In contrast, amide and primary amine functional groups have a notably lower than random prevalence. UMAP representation of the chemical space shows strong divergence in the regions occupied by OXPHOS-inactive and -active compounds. Of six compounds selected for experimental validation, 4 showed statistically significant inhibition of electron transport in bioenergetics assays. Two of these four compounds, lacidipine and esbiothrin, increased in intracellular oxygen radicals (a major hallmark of most OXPHOS inhibitors) and decreased the viability of two ovarian cancer cell lines, ID8 and OVCAR5. Finally, data from the pipeline were used to train random forest and support vector classifiers that effectively prioritized OXPHOS inhibitory compounds within a held-out test set (ROCAUC 0.962 and 0.927, respectively) and on another set containing 44 documented OXPHOS inhibitors outside of the training set (ROCAUC 0.900 and 0.823). This prototype pipeline is extensible and could be adapted for focus screening on other phenotypic targets for which sufficient public data are available.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3