Immunogenicity and cross-protective efficacy induced by delayed attenuated Salmonella with the regulated length of lipopolysaccharide in mice

Author:

Kong Qingke1,Bian Xiaoping1,Liu Qing2,Chen Yaolin1,Zhang Wenjin1,Li Mengru1,Zhang Xiaofen1,Yang Liu3,Liao Yonghong1

Affiliation:

1. Southwest University

2. College of animal science, Southwest University

3. National Center of Technology Innovation for Pigs

Abstract

Abstract Non-typhoidal Salmonella enterica serovar (NTS) is a major global foodborne pathogen that poses a major public health concern worldwide, and no vaccines were available for protecting against infection of multiple Salmonella serotypes, therefore, the development of Salmonella vaccines to provide broad protection is valuable. In this work, we aimed to regulate lipopolysaccharide (LPS) synthesis of live Salmonella in vivo for exposing conserved protein antigens on the outer membrane while maintaining smooth LPS patterns in vitro to keep their original ability to invade host cells for inducing cross-protection against infection of multiple Salmonella serotypes. We generated a series of mutants defective in genes to affect the length of LPS. These mutants exhibit in vivo regulated-delayed attenuation and altered length of LPS, and all these mutants were derived from SW067 (DpagL7 DpagP81::Plpp lpxE DlpxR9 Dfur9) containing ∆pagP81::Plpp lpxE mutation to reduce their endotoxic activity. Animal experiments demonstrated that all regulated delayed attenuated mutants exhibited reduced ability to colonize the organs of the mice, and SW114 (waaI), SW116 (waaJ), SW118 (waaL), and SW120 (wbaP) induced a significant production of IgG and IgA against OMPs isolated from S. Typhimurium, S. Enteritidis, and S. Choleraesuis. SW114 (waaI), SW116 (waaJ), and SW118 (waaL) were capable of conferring significant protection against infection of wild-type S. Enteritidis and S. Choleraesuis. In conclusion, regulated delayed attenuated Salmonella vaccines with the whole core oligosaccharides of LPS showed a good ability to expose conserved outer antigens and to trigger strong cross-immune responses against both homologous and heterologous Salmonella infections. These results give new insight into the development of the Salmonella vaccine against multiple serotypes of Salmonella.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3